| | (inpur |
eCo State space

s1s Platform I 9 |

State Space Explo
and ASAP:
User Perspective

Michael Westergaard
‘Z’L‘; Faculteit Wiskunde & Informatica
%lf' Technische Universiteit Eindhoven
wﬁf’
) then m.westergaard@tue.nl|

VJ’II

Instantiate Model 1
| > Model file Model
}

|_tnput_]

1

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

=
=
Li

afety Propertles
Imple reduction techniques

iInear temporal logic (LTL)

User Perspective

User Perspective

1"p++17((p + 1) mod n)

User Perspective

1 p++17"((p + 1) mod n)

User Perspective

Verification Project

= Verification of a a model Is done usm verification
prOJects consisting of

— CPN Models to be analyzed

— Reports reflecting results of
the queries

. How to obtain results from models and
gueries is described using verification jobs

Example:
DININg
Philosophers

[p = c orelse
(p +1) mod n = cj

[p = c orelse
' (p+1) modn =c,
- ¢ <> old]

Done
- 1 p++1 ((p + 1) mod n)

Demo:

{ | | - Li |
| B A B 4 y D . O y —~ - | |
P RNINC |

/
-y B B BE BB ‘ 4

= Do a bit of simple simulation

800 ASAP @)
v v [5 fahoma = 9 = . - vy —v _5_:3 v OBviav ‘ N FHv | 100% v
i £ Debug [Verification [Edit
i 0% Y T 0| *srh % | IS *Safety Checker | i *dsfn =
&% . Palette P>
v (= jobs N @ E
» I dsfn [safety Checker | : 3 s
[Input Instantiate Model | [Simple Report || . ,
v 5 srh tr P i Model Answe I JJ < Connection
: I |e|}—|> Model file Mode Results
» < Macro: S‘afety Checker Property Error trace ~ Macro
» < Macro: Simple Report [No Dead States] e Coambnle s
v (= models Model Safety propert . .
| protocol.model . Explorations
| QueueSystem.model . Graph
> queries = Misc
v (= reports =
» (= Execution 1 = Models
» (=~ Execution 2 > Queries

» (=~ Execution 3
» = Execution 4
» = Execution 5

_ Properties &2 | 8K Problems E! Console
dfb/jobs/dsfn.josel

" Property
Resource

¥Info

derived
editable
last modified
linked
location
name

Value

false
true
August 19, 2009 6:02:00 PM
false

dsfn.josel

/Users/michael /ASAP_Workspace/dfb/jobs/dsfn.josel

Example:

Check for Deadlocks

=~ Reporting v

- v = g

-~ = lLoading models E

= Creating a Verification job from a template

= Executing a job template
)

Reporting

J 4 ""1_!" - J’(rlj |
£ [Verification [Edit

»,scs ASAP oy

[Project Explorer &2 ’

&~ =0|

@ Results %

@ Statistics

¥ checker @ Configuration

vdemo
v (= jobs
v I checker
» < Macro: Safety Checker
» < Macro: Simple Report
v = models
v | deadlocking philosophers.mod
» [#2 Declarations
— New Page
L queries
v (= reports
v (= Execution 1
‘@ Configuration.rptdocument

¢ Results.rptdocument

@ Statistics.rptdocument

&——m—-——g)4 I
C Progress 23‘ %~ =0

No operations to display at this time.

No Dead States false

New_Page.Has_One: '00) ++ I'(1,D)++ 1'2,2) ++ I'(3,3) ++ 1'(4 4)
New_Page.Philosophers: 1°5

Error trace

New_Page.Has_One: I'(0,1) ++ I'(1,2) ++ I'(23) ++ ' (34) ++ 1" (4,0)
New_Page.Philosophers: 1°5

Error trace

L3

& Console & E"N:

Simulator Console
- let open Javabxecute in
case (SafetyChecker.explore true @ (CPN'Structure'MLExplicitRemoveStorage'4.emptyStorage { init_size = @ }(O) ((
of [] =» execute "result" []
I - == QO
end
val 1t = (O : unit

9

T4 »

o ———

@ Configuration | @ Statistics | @ z

No Dead States false

Error trace New_Page.Has_One: I'00) ++ I'(1,1) ++ 1"'(2,2) ++ ' (3,3) ++ 1" (4 4)
New_Page Philosophers: 1°5

Error trace New_Page.Has One: I'(O,) ++ I'(1,2) ++ 1I'(23) ++ '3 4) ++ 1'(4,0)
New_Page Philosophers: 1°5

L3

£l Console &3

Simulator Console
- let open Javabxecute in
case (SafetyChecker.explore true @ (CPN'Structure'MLExplicitRemoves
of [] => execute "result" []
LT sy Second
end
val it = (O : unit

f -

JOSEL: Background

™ ASAP Su pports a wide range of state space methods
~ O Depth-first and breadth-first traversa
= On-line and off-line analysis

.

g_J/‘:
compaction

= Sweep-line and ComBack
methods

= Safety properties, LTL

JOSEL: Background

— Applying a state space methods conS|sts Of

r il
rzu

Specifying a model to analyze gm_a;

o .

Making queries expressing desired properties

Select method to use for verification

st N b

Set parameters of and instantiate .
the selected method %

5. Execute the traversal
6. Post-process and interpret the results

-~ = Develop a high-level language mak

: possible to tie the model, queries and
desired state space method together

= Support research, education and industrial
application scenarios

JOSEL: Requirements

The hash functlon used to hash states when
storing in a hash table

= Modularity: Facilitate construction and use of
building blocks (templates) in verification jobs

= Extensibility: Allow extension for new
methods as needed

JOSEL Overview

~ Graphical language
INspired by: object flows
and hierarchy of CP-
Nets

~ Basic unit is a task

~ Tasks have typed input
and output ports

JOSEL Overview

~ Graphical language
Inspired by object flows

and hierarchy of CP-
NECLS '

~ Basic unit is a task

~ Tasks have typed input
and output ports

JOSEL Overview

— Graphical language
Inspired by object flows

and hierarchy. of CP-

nets > Model Exploration T| ¢ -
> Storage |
D Basic unit is a task 7y Wating se >/

~ Tasks have typed input
and output ports

Waiting Set Exploration

> Model
> Storage

Exploration T| ¢

> Waiting set

— A task represents a single unit of work/

operation: instantiating a data type, loading
a file, checking a property, ...

— Input ports represent data required to
perform the operation

— Output ports represent data produced by
the operation

f Instantiate Mode| W f Waiting Set Exploration
> Model file Model ¢ > Model Exploration T| ¢

[Hash Table Storage | > Storage
Model Storage > Waiting set

Hash function

Initial size

f Queue

nine Waiting sef

& Output and input ports can be connected

& A verification job (job) is a set of tasks and
their connections

f Instantiate Mode| W f Waiting Set Exploration
> Model file Model ¢ > Model Exploration T| ¢

[Hash Table Storage | > Storage
Model Storage > Waiting set

Hash function
\ S

Initial size

f Queue T ~

nine Waiting sef

& Output and input ports can be connected

& A verification job (job) is a set of tasks and
their connections

Instantiate Model l

Waiting Set Exploration

> Model file Model > Model Exploration T ¢
Hash Table Storage > Storage
| > Model Storage ¢ > Waiting set)

| > Hash function

> Initial size

 Queue |
Jobs

— Connections represent flow of information
— Ports can have multiple connections
— Can represent split of information

— Can represent multiple instantiations

®00 ASAP =

v &l [%5 || Tahoma +119 : A iy 0F v o ‘ N H | 100% v
i £ Debug [Verification [Edit
' 5% Y T 0| *srh R »E‘ *Safety Checker | [*dsfn | =
. . Palette P>
v@{éb; ¢ (Safety Checker] k&
el [Input Instantiate Model | [Simple Report || . ,
v [srh Model Answe <> Connection
> ¢ Macro: Safety Checker l |FI|QH Model file Model Results JJ
' S rmabe 4 Property Error trace © Macro
» <+ Macro: Simple Report I No Dead States | i N _ Checkers
v (= models Model Safety propert = S
_ protocol.model . Explorations
» QueueSystem.model .~ Graph
> queries | — Misc
v (= reports |~
» (= Execution 1 ~ Models
» (= Execution 2 . Queries "
» (= Execution 3 - Reporting nz
» .~ Execution 4 — — = —
» (= Execution 5 | Properties &3 »{L Problems4 El Co_nsole‘ R 8
dfb/jobs/dsfn.josel
= " Property Value
esource . .
derived false
editable true
last modified August 19, 2009 6:02:00 PM
linked false
location /Users/michael /ASAP_Workspace/dfb/jobs/dsfn.josel
name dsfn.josel

Deadlock Checker

[Safety Checker |

f Input f Instantiate Model Simple Report |
Model Answe }
IFild >— > Model file Model ¢ | }} Results
> Property Error trace o
[No Dead States - — 4
| > Model Safety property| ¢

Deadlock Checker

\Loadamodel

[Safety Checker |

f Input f Instantiate Model Simple Report |
Model Answe }
IFild > > Model file Model ¢ | »} Results
> Property Error trace o
[No Dead States - — 4
| > Model Safety propertyl ¢

Deadlock Checker

Load a model

...from
- this file
[Input (" Instantiate Model [Safety Checker |

i Model A } Simple Report |
ode nswe
IFild > > Model file Model ¢ |> property Error trace }’} Results
\—J

f No Dead States
> Model Safety property| o

Deadlock Checker

Load @a model [nstantiate the
from “no deadlock”

this file ~ Property

f Input f Instantiate Model
IFil >—> Model file Model ¢ -
f No Dead States
| > Model Safety property| ¢

[Safety Checker |

Simple Report
Model Answe } & P]
| }} Results

Deadlock Checker

‘Load a model [nstantiate the
_from “no deadlock”

this file property

f Input f Instantiate Model

[Safety Checker |
IFilef>—{> Model file ~ Model ¢ -
[No Dead States

Simple Report
Model Answe } & P]
| }} Results
> Model Safety property| o

...check the

safety property
fo_r the model

Deadlock Checker

Load a model Instantiate the ..and dump
_from “no deadlock” the results in a
this file - property e report

[Safety Checker |
f No Dead States

Simple Report
Model Answe } & P]
| }} Results
> Model Safety property| o

...check the

safety property
for the model

f Input f Instantiate Model
IFil >—> Model file Model ¢ a

Deadlock Checker

= It isin fact a macro representing multiple
tasks, such as instantiating a hash table
and performing a BFS

(Safety Checker) .
Sim ::

> Model Answer| ¢ (>
D Results

> Property Error trac

Abstraction

— The “Safety Checker” is not a single unit of
WOrk

— It is in fact a macro representing multiple
tasks, such as instantiating a hash table
and performing a BFS

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracele

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracel®

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

B — Jobs can have

l':?| ' exported ports

> Exploration ST AnswerlBe

> Property Error Tracel®

> Build traces
'} Maximum of errors

¢ & Jobs can be
Safety Checker _ represented by
Answe macro tasks
- (macros)

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_a— > Model Exploration T e— > Exploration T Exploration ST ¢ [On-the-fly Safety Checker

“> Storage > Exploration ST Answerl3s
Hash Storage }
| > Model Storagd

[Pipe | > Waiting set [> Property Error Tracele

[> In Ou

} Model
- ———
Storage
[Input ___—{> Build traces
Boolean o— | > Maximum of errors
f Input | ~

Integer &~

Safety Checker

f Queue f Waiting Set Exploration f Exploration T -> ST

} Engine Waiting --} } Model Exploration } } Exploration T Exploration S } (On-the-fly Safety Checker
ﬁ> Storage > Exploration ST Answe
> Waiting set [> Property Error Tracefe
Model
Storage
[Input > Build traces
Boolean ¢

| > Maximum of errors
f Input -~ |
Intege - 5 :
. Check the given

property using
the given

Safety @[]/« exploration

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_x— > Model Exploration T >—{ > Exploration T Exploration ST| ¢ [On-the-fly Safety Checker

[Y
= / ﬁ’ Storage > Exploration ST Answe
o lp;u > Waiting set [> Property Error Traceffe
) Model

\ Model Storagd

Storage

[Input > Build traces
Boolean ¢

> Maximum of errors
e _—
Stop after finding ey CheCk the given

at most 10 errors property using
the given

Safety @ p[=Tef« exploration

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_a— > Model Exploration T e— > Exploration T Exploration ST ¢ [On-thefly Safety Checker

[Y
= / ﬁ’ Storage > Exploration ST Answe
o ngu > Waiting set [> Property Error Traceffe
) Model

\ Model Storagd

Storage
[Input > Build traces
LBoolea > | > Maximum of errors

Stop after finding 5 g CNeCK the given
at most 10 errors property using

the given
S « Build error-traces ,¢ exploration
during exploration

Technical — just make
‘sure the letters match

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_x— > Model Exploration T >—{ > Exploration T Exploration ST| ¢ [On-thefly Safety Checker
t} Storage

% #‘)
> Exploration ST Answerl3s
[Pipe / > Waiting set
[> | 5 } [m] g [> Property Error Trac__‘
n ut
‘ Model Storagd g Model

e ——

Storage

[Input > Build traces
| Boolean ¢

| > Maximum of errors

f Input

Check the given
property using

the given
exploration

/

Stop after finding
at most 10 errors

S « Build error-traces)
during exploration

Exploration

sure the letters match

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_x— > Model Exploration T >—{ > Exploration T Exploration ST| ¢ [On-the-fly Safety Checker
t} Storage

% #‘)
H > Exploration ST Answer3
Pipe 4 —]Hash Storage | > Waiting set B> Property Error Trac
In Out
Vodel

e ——

Storage
[Input > Build traces

m | > Maximum of errors
f Input
Check the given

property using
the given
exploration

/

Stop after finding
at most 10 errors

S « Build error-traces)
during exploration

Temporary Exploration
storageisa algorithm
queue

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_x— > Model Exploration T >—{ > Exploration T Exploration ST| ¢ (On-the-fly Safety Checker
t} Storage

h ——— V)
> Exploration ST Answerl3s
[Pipe / > Waiting set
——— (™ Hash Storage | g > Property Error Tracele
n ut
‘ Model Storagd g Model

e — e

Technical — just make
sure the letters match

Storage
[Input > Build traces

m | > Maximum of errors

f Input

;M /‘
Check the given

property using
the given
exploration

/

Stop after finding
at most 10 errors

S « Build error-traces ¢
during exploration

Temporary Exploration
storage is a algorithm
queue

Technical — just make
sure the letters match

f Queue f Waiting Set Exploration f Exploration T -> ST
> Engine Waiting set_x— > Model Exploration T >—{ > Exploration T Exploration ST| ¢ (On-the-fly Safety Checker
t} Storage

h — V)
> Exploration ST Answerl3s
[Pipe / > Waiting set
B | outs | Hash Storage | 9 > Property Error Trac__l
n ut
| > Model Storag Model

—————— e

[Input > lelrj?cfaces
Permanent Storage m } Maximum of errors

. Input /
IS @ hash table L{ .

Check the given

property using
the given
exploration

e

“ Stop after finding .,
at most 10 errors

S « Build error-traces)
during exploration

Temporary Exploration

storageisa algorithm lechnical = just make

sure the letters match

queue

f Queue f Waiting Set Exploration f Exploration T -> ST

> Engine Waiting -}‘} Model Exploration T >—{> Exploration T Exploration ST ¢ (On-the-fly Safety Checker
- / ﬁ> Storage > Exploration ST Answerlle
" pOu > Waiting set > Property Error Tracele

> Model Storagd ¢ . Model

Storage
[Input > Build traces
Permanent Storage M } Maximum of errors

= | h Input —/
i s a hash table L{ -

Technical — | Stop after finding = s Check the given
allows us to | at most 10 errors property using
only specify the given
the model exploration
once on the
level above

S « Build error-traces
during exploration

Queue (Waiting Set EXxf

> Engine Waiting set_a— > Model EX|
[

> Storage

\n
> Waiting set

Safety Checker

\

W Hash Table Storage

f Pipe

[}% n Ou } Model Storage[:l>>

f CPN Tools Hash Function 1 W Hash function
Model Hash functio Initial size

r

Input W
Intege

.

Hash Storage

Hash Table Storage

[Pipe |
[}% n Ou } Model Storage[:l>>
f CPN Tools Hash Function 1 W Hash function
Model Hash functio Initial size 5

i Input W

 Intege Instantiate the
- per manent

Hash Storage

...using this

(built-in) hash :
D function Hash Table Storage
[:l>£ N |p2u W — - } Model Storage[:1>>
[CPN Tools Hash Function 1 | Hash function

Model Hash functio Initial size 5
i Input W

 Intege Instantiate the

permanent

storage

Hash Storage

...using this
(built-in) hash \
([Pipe) function : Hash Table Storage

> Model Storage[:l>>

[:[% In QOu
f CPN Tools Hash Function 1 W Hash function
Model Hash;y Initial size _

i Input W
K Intege

Instantiate the

- permanent
...and initially make storage

room for 1000 states
(expands automatically)

Hash Storage

...using this
(built-in) hash

. - Hash Table Storage
[l>£ InPIpZu W funCtlon > Model Storage[:[»
&\é CPN Tools Hash Function 1 M Hash function
Model Hash functio Initial size 5
r Input [;/l}
Technical — Intege Instantiate the
allows us to o permanent
only specify ~ ---and initially make storage

the model | room for 1000 states __
once on the | (€xpands automatically)

level above Hash StOI‘age

— :/"5 sometimes we m dy Wal tEt—O—:CZI'Te:C:k

e

D

- properties other than absenc e of deadlocks

= Custom properties are created using SML
= ASAP automatically generates a template
formula tailored to a specific model

(No Dead States l
> Model Safety property ¢

[Safety Checker |
(Instantiate Model ﬁ ' Model A
ode nswer
> Model file Model} \{ [l

T nput [SML Safety Property \ Property Error trace o
Fildy > Model Safety Property| ¢
> > SML file
Input

Example:
Mutual Exclusion

Mutual Exclusion: jqascasas
= We want to check that two adjacent

philosophers cannot be eating at the same time

— I.e., that they are not allowed access to a
shared resource (chop-stick) at the same time

— This is equivalent to checking that if philosopher
p IS eating, then philosopher p+1 is not (mod n)

S

1gs to a list, “Ist™

A
- ., ¥ Y B

r,

-~ = Check if *p + 1 mod n” belongs to a list, “Ist”:

\\ 77 ;

= Check if there is an element “p” in “Ist” such
that "p + 1 mod n” belongs to “lst™:

Yes, this is inefficient; we can sort

“Ist” and only compare neighbors

H\\um pie
1 1al Exclusion

= Ve Yeala) oyl

EXalll _,‘:)Jﬁ "

RA.Lovoal s [l om— S——
Mutual Exclusion

not (List.exists (fn p => List.exists
(fnp' =>p’ =

(p + 1) mod (List.hd Philosophers)
) Eating) Eating)

5 'V 2Ypp) |
Demo:
RA:-3 :

HE reate'pmperty
Edlt JoSEL job

un checker

;U

nE->S

Exploration

Off-line Analysis 1

Exploration S Exploration § ¢

> Model Graph Model Safety Checker

Explorati A 1
O Storage MLGraph > Exploration S ”Sweru.

P> Property Witnessl>

> Model
> Storage

Input 1 > Maximum of errors

Example:

On-line vs. Off-line

S—Iect'an-s W
W:i=W\{s}
forallt, s

such thats —»'s'do
iIf s" V then

Vi=Vu{s }
W:i=Wu{s }

. | | y : y |
y | | j JQJ Vo ré | &q 1‘ y .
| | {
‘ y ! | 44 | | | g :
| | I NP | '
| | | v

V= So .
-~ W= S0
- whileW #od

W= WA {5}
-~ if =I(s)then
return false
for all t, s" such that s »t's’ do
iIf s V then

Vi=Vu{s}
W:i=Wu{s}
return true

On-line

Off-line

Finds errors faster

Uses less memory

Supported by ASAP

Can check additional properties
subsequently

Can (easier) provide error traces

Can check more properties

Supported by Design/CPN, CPN
Tools, and ASAP

On-line vs. Off-line

- O Show safety checker and time spent

checking property (maybe crank up size) :
= Change to off-line
= Note that top-level has not changed

& Show time spent checking property

f Instantiate Model f Waiting Set Exploration
Model file Model > Model Exploration T| 2

f Hash Compaction Storage } Storage

Model Storage ¢ , | > Waiting set

Hash Function

Initial size

[Queue
> Engine Waiting set

Example:

Hash-compaction

= What if we only use, say, 4 bytes per state;
then we can store 4 GB / 4 = 10° states

— This is the rationale behind hash-
compaction

Observation

— For a hash function h (any: function, really) we have
— s=5 = Nh(s)=Nh(s)

— We use the terminology
— S: full state descriptor (1000 bytes)
— h(s): compressed state descriptor (4 bytes)
— We do not have that h(s) = h(s’) = s = s, but good
hash functions ensure that this is mostly true

= If h(s) = h(s") but s # s” we say we have a hash
collision

W"—W'\—{'s } - —
-~ if =I(s)then - -
return false
for all t s" such that s »t's’' do

if " ¢ V then
Vi=Vu{s'} We replace full state

W:=Wu{s'} descriptors by

return true

compressed state
descriptors in V

W"—W'\—{'s } . -
-~ if =I(s)then . .
return false
for all t s" such thats —»ts do

if n
Veu{ h(s) ¥
W:=Wu{s}

return true

L= ~L e~ Y Y~ 1 O~

Hasn-compaction
V= { h(so) } |
 Wo={s : As long as we :

while W # 2 do S G- Fiagh

collisions, this
lect an < = \W : :
Se ‘ec‘-;e'm:i.e:‘: algorithm works

A= te | identically to the
If—_;TI-'(-S)—then— . previous

return false
forall t s'such thats »2's’ do
if

return true

ExXamg I)J 3

E

ExXamy I)J 3

E

ExXamy I)J 3

E

V: hl h2h3
W: s2 S5

V: hl h2h3
W: s2 S5

V: hl h2h3
W

S5

V: hl h2h3
W

V: hl h2h3
W: S5

| = d— _

¢ \ 4y . B BN @

Exam ;)J‘\
|

: b :
-

=
 o» | |
| |

hl

V: hl h2h3
W

| = d— _
¢ \ 4y . B BN @
Exam ;)J‘\
|
L

V: hl h2h3
W

Example
| y | | ! : | -~
|

V: hl h2h3
W

V: hl1 h2 h3 h4
W s4

| - d- .

| V {a | g \ | g | y Q

: éxgn Ippl ;)j <)
|
|
I

b

V: hl1 h2 h3 h4
W s4

V: hl1 h2 h3 h4
W s4

| - d- .

| V {a | g \ | g | y Q

: éxgn Ippl ;)j <)
|
|
I

— b I Db - ——

V: hl1 h2 h3 h4
W

Example
| y | | ! : | -~

|

L

V: hl1 h2 h3 h4
W

V: hl1 h2 h3 h4
W

Never
V: hl h2 h3 h4 discovered

W:

Notes on Hash-compaction

=~ We find most but not all states
— Improve coverage by using larger hash values

— Improve coverage using more than one hash
function

— SHA-1 uses 160 bits (20 bytes) per state and
has Nno known collisions

— Uses around as much time as the standard
algorithm and space is still O(# nodes) but with
a smaller factor

DEIN0O:
L3 L

| B
o

- >

CE— — S—

- O Replace storage in standard method

D

= We can but should not compute error
traces

= If we use DFS traversal, computing error
traces is no problem

Model Nodes | NodesHC | Mem | MemHC | % | /st | /stHC
DP22 39604 39603| 23.6 20.8] 88| 625 550
DB10 196832 196798 174.0 49| 3| 927 26
SW74 215196 214569 43.0 52(12| 210 25
TSS 107648 107647 61.2 4571 75| 596 445
ERDP?2 207003 206921 874 51| 6| 443 26
ERDP3 42777126| 4270926 - 113.5] - - 28

Model Nodes | NodesHC | Mem | MemHC | % | /st | /stHC
DP22 39604 39603| 23.6 20.8| 88 / 550
DB10 196832 196798 174.0 49| 3 927/ 26
SW74 215196 214569 43.0 520 12| 210 25
TSS 107648 107647 61.2 457 75 > 445
ERDP?2 207003 206921 874 51| 6 443/ 26
ERDP3 42777126| 4270926 - 113.5] - - 28

f Instantiate Model f Waiting Set Exploration
Model file Model Model Exploration T ¢

f Double Hashing Storage > Storage

} Model Storag } Waiting set

} Hash function 1
} Hash function 2

} Size

} Combinations

Queue }
2aine Waiting se

Example:

Bit-state Hashing

Bit-state Hashing

— Hash-compaction uses a hash function to
compress state descriptor and stores the
compressed vectors

— Bit-state hashing instead uses a hash
function to compute an index In an array
and sets a bit if a corresponding state has

been seen

= We need an array of size 2!")/8 bytes,
e.g., 2°%/8 = 500 Mb to get same coverage

as hash compaction

W"—W'\—{'s } — —
-~ if =I(s)then - -
return false
for all t s" such that s »t's’' do
iIf s V then

Vi=Vu{s }
W:=Wu{s}
return true

1Seyv.
W"—W'\—{'s h - —
-~ if =I(s)then - -
return false
for all t s" such that s »t's’' do

1i =V[h(s)]

W:=Wu{s}
return true

| —_ ‘-'(, »
Hash-compaction

/1= new bool[2!"®)I]: V[h(sp)] := true
W= <So :

- C This works exactly
while W £ 2 ¢
e . lﬁr W like hash-compaction
= with the same hash

function.
VIA(S e full state
We replac
VIh(s")] := true

descriptors with bit-
array access.

Bit-state Hashing Vvs.
Hash-compaction

— Both allow Us to Increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

— Hash-compaction uses memory: proportional to
the size of the humber of nodes, bit-state
hashing uses a constant amount of memory

— Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

Bit-state Hashing Vvs.
Hash-compaction

— Both allow Us to Increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

— Hash-compaction uses memory: proportional to
the size of the humber of nodes, bit-state
hashing uses a constant amount of memory

— Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

More Hash Functions

— Using 2 hash functions require that we
have 2 collisions instead of just one

— But we may have a new kind of collisions,
hi(s1) = ha(s2)

— Using more hash functions improves
coverage to a certain point where the bit-
array gets “filled up”, so collisions become
more common

- wW={soy
-~ whileW+*odo

-~ SelectanseW RUC simply set and

W=/ 5| read bits for both %
. ji=i) i | (orall)hash |

return false functions.
for all t, s" such that s »'s" do
if =V[h(s")] then
VIh(s")] := true
W:=Wu{s }
return true

| S — } e~ Y.~ 5
HASN=COMp:c

~ V::= new bool[2"®IT;V[h(sp)] := true
o dd = N-“E.{E%S - V[hZ(SO)] = frue
-~ whileW#g¢do

-~ SelectanseW RUC simply set and

- W= g5 | read bits for both |
. if -I(s) then - | (oral)hash |
return false functions.

VIh(s")] := trueFai
W:=Wu{s }
return true

Double Hashing

Calculating hash functions: s actually: pretty
expensive, so the time complexity: grows with
the number of hash functions

Simply using hn(s) = n e hi(S) does not work!

It turns out that using hn(s) = h e h(s) + h'(s)
does work; this Is called double hashing

Triple hashing works better but takes more time

Experiments show that using 15-20 hash
functions works well

)ama—'

= Replace storage on standard example

Model Nodes | NodesDH | Mem | MemDH | % | /st | /stDH
DP22 39604 39604| 23.6 32.0{ 135 625 846
DB10 196832 196832 174.0 123 7| 927 66
SW74 215196 215196 43.0 12.3(28| 210 60
TSS 107648 107648 61.2 554 90| 596 540
ERDP?2 207003 207003| 874 12.3| 14| 443 62
ERDP3 42777126 4277125 - 12.1 - - 3

Model Nodes MemHC | MemDH | /stateHC | /stateDH
DP22 39604 20.8 32.0 550 846
DB10 196832 4.9 12.3 26 66
SW7.4 215196 5.2 12.3 25 60
TS5 107648 45.7 554 445 540
ERDP?2 207003 5.1 12.3 26 62
ERDP3 4277126 113.5 12.1 28 3

[Hash Compaction Safety Checker |

Property Answe

Model Error Trac

]

[Safety Checker

Property Answe

Model

Error Trac

[Double Hashing Safety Checker |

Property Answe

Model Error Trac

Comparing the Top-levels

//

/E'
B

D
(>

Drawing SS Graphs

DEMmMo:
— D ta:'x - S& !ag‘:x'

ol el v)

~J -C—:ha 'ge-safety_c “hecker to d raW'SS:gra]a h

D

Change model size to 2 phllosophers

0

Play with layouts

=
-
=
-

Export to DOT and GML

Simple Protocol

=

o
mt
g ©
ca
G o

o
n

£

7

Example
Simple Protocol

’T.*r'T
] e,
K o W sald
"d“}“ "“ i ‘I : a : / .
. 1] R R -
T T ST L p—
il - 3000-nodes
il ssisesiiit
et IS
ay‘ {I ‘;fi;;;‘ :f{.
i

B

£
=

- e
]

“:“ 22— T — T —
4 > \ 7 V - 'jm it == ‘:N::Y_ e =
10-packets e

Example:
Simple Protocol

- T Displaying error trace

= Displaying multiple error traces in a single
window

= Until now we have only dealt with safety
properties (i.e., what happens in one state)

— Temporal logics allow us to talk about
several states

o

dropositional Logi

-~ = Atomic Propositions

= Syntax
SURORHES oB B (OB RORS A
= We call all such formulas Prop

-~ A formula @ holds for a system if it holds in
all reachable states

Lo e

w=¢ . 1 Example

APs holding in a state are
shown inside the state

Lo e

AP ={ e } Example Q= V

APs holding in a state are
shown inside the state

Lo e

AP ={ e } Example Q= V

APs holding in a state are
shown inside the state

ac ’ 7 ‘.,“.
R e R N P it S 4‘ J
N
{ } ' { }
¢
NIy 2
Y T a2 g
Y e o g
R PR
. A ‘ "

Lo e

AP _{ e } Example (p — \V/

APs holding in a state are O
shown inside the state

ac ’ 7 ‘.,“.
R e R N P it S 4‘ J
N
{ } ' { }
¢
NIy 2
Y T a2 g
Y e o g
R PR
. A ‘ "

Lo e

AP _{ e } Example (p — \V/

APs holding in a state are O
shown inside the state

Lo e

w=¢ . 1 Example

APs holding in a state are
shown inside the state

Lo e

¢’ = « does not hold

AP = { |2 &y --but after executing
= “some” transitions, it

shown inside the state does...

APs holding in a state are

Dining
Philosophers
p = philisopher 1 eats

Hmﬂﬂcs opher 1 always
=C =P

L/kuﬂt@ﬁ@[@ku@ﬁ 1 mbw@[f

oY

[p = c orelse
(p +1) mod n = c]

[p = c orelse
(p +1) mod n = c,
c <> old]

Chopsticks

CHOP

J

Done I

1 p++1 ((p + 1) mod n)

\ = \
.l
(\ .
A}
‘\

[p = c orelse
(p +1) mod n = c,
c <> old]

N I L L L N .

Done J'
l 1'p++1 ((p + 1) mod r

1 0++| (5
1 1++
(1°2++
1°3++ PHIL
1°4

P

[p = c orelse Take
(p +1) mod n = c]| First

(p, C

p, old)

PHILXCHO

Example:
DININg
Philosophers

1

mu%qag@wp@mﬁ
&%

V(_

Eﬂiﬂ@ijlo.z‘l Dosite:

. - Dining
e t=—8 Philosophers
p“does not hold in &
p = ¢ ore all states <
B== _p does not hold
in-all states &
p-holds in-at least --We can actually-cneck

[p = c orelse
(p +1) mod » = -

ONer-1-may-eat?

O N N N LN o o 0 -

e ANSWEF IS the opposite

DININg
Philosophers

p = philisepher 1 eats

Philesopher 1 willa

[p = c orelse

[p = c orelse
(p+1) mod n =
c <> old]

(p +1) mod n =]

I Second

J

Done I

1 p++1 ((p + 1) mod n)

Example:
DININg
Philosophers

[p = c orelse
(p +1) mod n = cj

[p = c orelse
' (p+1) modn =c,
- ¢ <> old]

Chopsticks

CHOP

‘ Done '

1 p++1 ((p + 1) mod n)

= Add some syntactical sugar

S Fo = true U ¢ (also written ¢ @)

Gop = =F=@ (also written [_p)

(L

PLIL Syntax

S0i=p a0 o2 U X0 [oUY
= Add some syntactical sugar

= Fo = true U ¢ (also written < @)

S G = =F=o (also written []o)

PLTL Syntax

SURORHRoR B (OR RORS M UR D QORRORERI

= Add some syntactical sugar

S Fo = true U ¢ (also written ¢ @)
G G(P = —|F—|(|) (a|SO written |:|(|))

\‘ / 1; |

SVEREEEINSS 1 | ¢ | @~y X0 [o Uy
POSSIDIY;

“AJE SOme syntactical sugar

true U ¢ (also written < @)

=F=@ (also written [_]p)

',‘—-'_S "v :
N B B ..' .
O Eem H S HH - - —

= Atomic Propositions

ome syntactical suga

true U @ (also writt

[p = c orelse
(p +1) mod n = c]

Philosophers

p = philisepher 1 eats

[p = c orelse
(p +1) mod n = ¢,
c <> old]

Chopsticks

CHOP
Philosopher 1 will-always
e€at at some point

: Done >
| 1 p++1 ((p + 1) mod n)

DININg
Philosophers

[p = c orelse
(p +1) mod n = c]

p = philisepher 1 eats

[p = c orelse
(p +1) mod n = ¢,
c <> old]

Chopsticks

CHOP
Philesopher-1-will-always
eat at some point

: Done J
l 1 p++1 ((p + 1) mod n)

— F{pj

LTL Examples

— Safety (nothing bad happens): G =bad
= Liveness (something good happens): F good

— Response (requests are eventually serviced):
G(request — F serviced)

— Reactiveness (infinite number of requests
means an infinite number are serviced):
GF sent — GF received

-~ = (M) language of a model M (i.e., al
=p©SSIbI e executions of M)

- O L(p) language of a formula ¢ (i.e.,, all
traces satisfying @)

= We want to check that
L(M) c L(p) & L(M) n L(p)t =
& L(M) n L(=0) = @

Checking LTL (2)

= We want to check that L(M) n L(=®) = @

— We can construct a Buchi automaton A-o
such that L(=®) = L(A-p)

— The state space SSw Is essentially a Buchi
automaton representing L(M)

= We thus check whether L(SSm X A-¢p) = @

— The product is (essentially) equal to the
product construction for finite automata

Checking LTL (3)

— A Buchi automaton Is a finite automaton
but in order for a word to be accepted, we
must go thru an accept state infinitely often

— As it is finite, this means we must visit (at
least) one accept state infinitely often

— This is only possible if we can find a loop

containing the accept state from the initial
State

-ﬁ—-,

= We can fmcl.suc;h-ac epting” loops by
- neste d_de’pth"ﬂr'st rch:

= Do DFS from the |n|t|al state until an
accepting state

= Do DFS from the accepting state to see if
we can reach the state again

Checking LTL (5)
- s

LTL formula Buchi au te‘m'a’te‘ni ‘

N
¢ o ’ AN
- » 5 Product Accepting
_ e automaton cycle

Model State space

I, Input ‘ Load Model
IFil Model file Model 2

Construct Product Nested DFS Show Results

| > Model Product model ¢ > Product model | > Results
| - i
) ’

| > Buchi model Hash functio > Java Graph

Input

| Load LTL
IFilg 2 | > Model Buchi model ¢
Input ‘} Formula file
IFiI ‘} Mapping file
Input ‘} Name
String

Checking in ASAP

I, Input ‘ Load Model
IFil Model file Model 2

‘ Construct Product ‘ Nested DFS Show Results
|} Model Product mode ‘} Product model Resul __IResuIts
" Input | > Buchi model Hash function g | > Hash function Witnesse /}} Java Graph

i Load LTL
IFile ¢ > Model Buchi model ¢
I, Input ‘} Formula file \/v ~—1 e m = |
\We return-a-mocel
I, Input Name

(generator/transition
relation)-rather than
an-automaton

/

LTL Checking in ASAP

I, Input ‘ Load Model
IFil Model file Model 2

‘ Construct Product ‘ Nested DFS Show Results
|} Model Product mode ‘} Product model Resul __IResuIts
N | > Buchi model Hash function ¢ | > Hash function Witnesse }} Java Graph
put C —— — — — _V — " ""Y
. | Load LTL
IFile 2 .

> Model Buchi model ¢

__Input > Formula file

__id Mapping file \We return-a model

' 'g::::,g_g/ S - (generator/transition
We-return-a-moael relation) rather than

(generator/transition an automaton
relation) rather than

cdlRl=attOrrlator

LTL Checking in ASAP

/

DININg
Philosophers

[p = c orelse
(p +1) mod n = c]

p = philisepher 1 eats

[p = c orelse
(p +1) mod n = ¢,
c <> old]

Chopsticks

CHOP
Philesopher-1-will-always
eat at some point

: Done J
l 1 p++1 ((p + 1) mod n)

— F{pj

[p = c orelse
(p +1) mod n =]

[p = c orelse

(p +1) mod n = ¢,
c <> old]

Philesopher-1-will-always

How do we o)\%
enter formulas In the tool?

Chopsticks
CHOP

++1 ((p + 1) mod n)

- Entering

o ' '
— - = Em - .

- & We already said that our atomic
- propositions are functions

= It is possible to build a complex data
structure representing the formulas and
APs as functions

= ...which we do internally and immediately
hide from users :-)

Demo: LTL

= Mapping can be reused
‘Show error traces

(Draw Buchi automaton)

