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 := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true
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Verification Project

Verification of a a model is done using verification 
projects consisting of

CPN Models to be analyzed

Queries expressing the properties we are 
interested in

Reports reflecting results of
the queries

How to obtain results from models and
queries is described using verification jobs
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Demo:
Dining Philosophers

Do a bit of simple simulation



Example:
Check for Deadlocks



Demo:
Check for Deadlocks

Creation of Verification project

Loading models

Creating a Verification job from a template

Executing a job template

Reporting
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JoSEL: Background
ASAP Supports a wide range of state space methods

Depth-first and breadth-first traversal

On-line and off-line analysis

Bit-state hashing and hash
compaction

Sweep-line and ComBack
methods

Safety properties, LTL



JoSEL: Background

Applying a state space methods consists of

1. Specifying a model to analyze

2. Making queries expressing desired properties

3. Select method to use for verification

4. Set parameters of and instantiate
the selected method

5. Execute the traversal

6. Post-process and interpret the results
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JoSEL: Aim

Develop a high-level language making it 
possible to tie the model, queries and 
desired state space method together

Support research, education and industrial 
application scenarios



JoSEL: Requirements

Abstraction: Hide details from users

Low-level control: Make it possible to access 
details when required for performance

Modularity: Facilitate construction and use of 
building blocks (templates) in verification jobs

Extensibility: Allow extension for new 
methods as needed

The hash function used to hash states when 
storing in a hash table



JoSEL Overview

Graphical language 
inspired by object flows 
and hierarchy of CP-
nets

Basic unit is a task

Tasks have typed input 
and output ports
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Tasks
A task represents a single unit of work/
operation: instantiating a data type, loading 
a file, checking a property, …

Input ports represent data required to 
perform the operation

Output ports represent data produced by 
the operation



Output and input ports can be connected

A verification job (job) is a set of tasks and 
their connections



Output and input ports can be connected

A verification job (job) is a set of tasks and 
their connections



Jobs

Connections represent flow of information

Ports can have multiple connections

Can represent split of information

Can represent multiple instantiations
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Deadlock Checker

Load a model

…from 
this file

Instantiate the 
“no deadlock” 

property

…check the 
safety property 
for the model

…and dump 
the results in a 

report



Abstraction

The “Safety Checker” is not a single unit of 
work

It is in fact a macro representing multiple 
tasks, such as instantiating a hash table 
and performing a BFS
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the given 
exploration
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Safety Checker

Check the given 
property using 

the given 
exploration

Stop after finding 
at most 10 errors

Build error-traces 
during exploration

Technical – just make 
sure the letters match

Exploration 
algorithm

Temporary 
storage is a 

queue

Permanent storage 
is a hash table

Technical – 
allows us to 
only specify 
the model 

once on the 
level above



Safety Checker



Hash Storage
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…and initially make 
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Instantiate the 
permanent 

storage

…using this 
(built-in) hash 

function

…and initially make 
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Technical – 
allows us to 
only specify 
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Safety Properties

Sometimes we may want to check 
properties other than absence of deadlocks

Custom properties are created using SML

ASAP automatically generates a template 
formula tailored to a specific model
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Example:
Mutual Exclusion

We want to check that two adjacent 
philosophers cannot be eating at the same time

I.e., that they are not allowed access to a 
shared resource (chop-stick) at the same time

This is equivalent to checking that if philosopher 
p is eating, then philosopher p+1 is not (mod n)



A Bit of SML
Check if there is an element “p’ ” in “lst” that 
satisfies the predicate “f(p’)”:
List.exists (fn p’ => f(p’)) lst

Check if “2 + 1 mod 7” belongs to a list, “lst”:
List.exists (fn p' => p’ = (2 + 1) mod 7) lst

Check if “p + 1 mod n” belongs to a list, “lst”:
List.exists (fn p' => p’ = (p + 1) mod n) lst

Check if there is an element “p” in “lst” such 
that “p + 1 mod n” belongs to “lst”:
List.exists (fn p => List.exists
  (fn p' => p' = (p + 1) mod n) lst) lst

Yes, this is inefficient; we can sort 
“lst” and only compare neighbors



Example:
Mutual Exclusion

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
                         Philosophers, Initialized,
                         Chopsticks } = true
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state
	 end



fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
                         Philosophers, Initialized,
                         Chopsticks } =
      not (List.exists (fn p => List.exists
                    (fn p' => p’ =
                      (p + 1) mod (List.hd Philosophers)
                    ) Eating) Eating)
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state

Example:
Mutual Exclusion



Demo:
Mutual Exclusion

Create property

Edit JoSEL job

Run checker



Example:
On-line vs. Off-line



Off-line Safety Checker

V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
for all t, s‘
     such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

for all v ∈ V do
if ¬I(v) then

return false
return true

This is off-line analysis; we first generate the state space and then we analyze it.



On-line Safety Checker
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

This is on-line 

analysis; we analyze 

the state space while 

we generate it.



On-line Off-line

Finds errors faster

Uses less memory

Supported by ASAP

Can check additional properties 
subsequently

Can (easier) provide error traces

Can check more properties

Supported by Design/CPN, CPN 
Tools, and ASAP

On-line vs. Off-line



Demo:
On-line vs. Off-line

Show safety checker and time spent 
checking property (maybe crank up size)

Change to off-line

Note that top-level has not changed

Show time spent checking property



Example:
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Hash-compaction
A problem of the standard method is that 
we use 1000 bytes per state, and 4 GB / 
1000 = 4 • 106 states

What if we only use, say, 4 bytes per state; 
then we can store 4 GB / 4 = 109 states

This is the rationale behind hash-
compaction



Observation
For a hash function h (any function, really) we have

s = s’ ⇒ h(s) = h(s’)

We use the terminology

s: full state descriptor (1000 bytes)

h(s): compressed state descriptor (4 bytes)

We do not have that h(s) = h(s’) ⇒ s = s’, but good 

hash functions ensure that this is mostly true

If h(s) = h(s’) but s ≠ s’ we say we have a hash 
collision



Hash-compaction
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W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors by 

compressed state 

descriptors in V
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Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors by 

compressed state 

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

As long as we 
encounter no hash 

collisions, this 
algorithm works 
identically to the 

previous
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Notes on Hash-compaction

We find most but not all states

Improve coverage by using larger hash values 

Improve coverage using more than one hash 
function

SHA-1 uses 160 bits (20 bytes) per state and 
has no known collisions

Uses around as much time as the standard 
algorithm and space is still O(# nodes) but with 
a smaller factor



Demo:
Hash-compaction

Replace storage in standard method

We can but should not compute error 
traces

If we use DFS traversal, computing error 
traces is no problem



Numbers
Model Nodes NodesHC Mem MemHC % /st /stHC

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39603 23.6 20.8 88 625 550

196832 196798 174.0 4.9 3 927 26

215196 214569 43.0 5.2 12 210 25

107648 107647 61.2 45.7 75 596 445

207003 206921 87.4 5.1 6 443 26

4277126 4270926 - 113.5 - - 28
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Example:
Bit-state Hashing



Bit-state Hashing
Hash-compaction uses a hash function to 
compress state descriptor and stores the 
compressed vectors

Bit-state hashing instead uses a hash 
function to compute an index in an array 
and sets a bit if a corresponding state has 
been seen

We need an array of size 2|h(s)|/8 bytes, 
e.g., 232/8 = 500 Mb to get same coverage 
as hash compaction



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors with bit-

array access.
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for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
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new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

This works exactly 
like hash-compaction 
with the same hash 

function.



Bit-state Hashing vs. 
Hash-compaction

Both allow us to increase the size of the 
compressed state descriptor to get better 
coverage, but for bit-state hashing each extra 
bit doubles memory usage

Hash-compaction uses memory proportional to 
the size of the number of nodes, bit-state 
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to 
the number of hash functions we use, bit-state 
hashing uses a constant amount of memory
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Both allow us to increase the size of the 
compressed state descriptor to get better 
coverage, but for bit-state hashing each extra 
bit doubles memory usage

Hash-compaction uses memory proportional to 
the size of the number of nodes, bit-state 
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to 
the number of hash functions we use, bit-state 
hashing uses a constant amount of memory



More Hash Functions

Using 2 hash functions require that we 
have 2 collisions instead of just one

But we may have a new kind of collisions, 
h1(s1) = h2(s2)

Using more hash functions improves 
coverage to a certain point where the bit-
array gets “filled up”, so collisions become 
more common



Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and 
read bits for both 

(or all) hash 
functions.



Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and 
read bits for both 

(or all) hash 
functions.

; V[h2(s0)] := true

or ¬V[h2(s’)]
; V[h2(s’)] := true



Double Hashing
Calculating hash functions is actually pretty 
expensive, so the time complexity grows with 
the number of hash functions

Simply using hn(s) = n • h1(s) does not work!

It turns out that using hn(s) = n • h(s) + h’(s) 
does work; this is called double hashing

Triple hashing works better but takes more time

Experiments show that using 15-20 hash 
functions works well



Demo:
Bit-state Hashing

Replace storage on standard example



Numbers
Model Nodes NodesDH Mem MemDH % /st /stDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39604 23.6 32.0 135 625 846

196832 196832 174.0 12.3 7 927 66

215196 215196 43.0 12.3 28 210 60

107648 107648 61.2 55.4 90 596 540

207003 207003 87.4 12.3 14 443 62

4277126 4277125 - 12.1 - - 3



More Numbers
Model Nodes MemHC MemDH /stateHC /stateDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 20.8 32.0 550 846

196832 4.9 12.3 26 66

215196 5.2 12.3 25 60

107648 45.7 55.4 445 540

207003 5.1 12.3 26 62

4277126 113.5 12.1 28 3



Comparing the Top-levels



Example:
Drawing SS Graphs



Demo:
Drawing SS Graphs

Change safety checker to draw SS graph

Change model size to 2 philosophers

Play with layouts

Export to DOT and GML



Example:
Simple Protocol



Example:
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10 packets



Example:
Simple Protocol

10 packets



Example:
Simple Protocol

3000 nodes

10 packets



Demo:
Error Traces

Displaying error trace

Displaying multiple error traces in a single 
window



Linear Temporal Logic

Until now we have only dealt with safety 
properties (i.e., what happens in one state)

Temporal logics allow us to talk about 
several states



Propositional Logic
Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ

We call all such formulas Prop

A formula φ holds for a system if it holds in 
all reachable states

We use SML 
functions for atomic 

propositions

We have not really 
used connectors 

until now



Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are 
shown inside the state
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APs holding in a state are 
shown inside the state
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Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are 
shown inside the state

φ’ = • does not hold

…but after executing 
“some” transitions, it 

does…
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1`2++
1`3++
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51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 always 
eats: φ = p

Philosopher 1 never 
eats: φ’ = ¬p
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Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 may eat?

…we can actually check 
this property:

• check φ’ = ¬p
•answer is the opposite
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Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 may eat?

…we can actually check 
this property:

• check φ’ = ¬p
•answer is the opposite

φ’ = false ⇔
φ’ does not hold in 

all states ⇔
¬p does not hold 

in all states ⇔
p holds in at least 

one state
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Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 will always 
eat at some point
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1`p++1`((p + 1) mod n)
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c
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c
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Done

Take
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1`1++
1`2++
1`3++
1`4

Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 will always 
eat at some point

…we cannot check this 
(unless “eat at some 
point” is an atomic 

proposition)



PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)
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Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next 
state φ holds

φ holds until ψ 
holds (and ψ 

holds eventually)

φ holds at 
some point 

(future, 
eventually, 
possibly)



PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next 
state φ holds

φ holds until ψ 
holds (and ψ 

holds eventually)

φ holds at 
some point 

(future, 
eventually, 
possibly)

φ holds in all 
states 

(everywhere, 
globally, 

necessarily)
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Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

• U • 

G •

F • 

For a property to hold for a 
state space, it must hold along 

all (infinite) paths
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Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

F •
FG •
GF •
• → X •
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51`0++
1`1++
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1`3++
1`4

Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 will always 
eat at some point

•φ’’ = F p
•φ’’’ = G F p



LTL Examples

Safety (nothing bad happens): G ¬bad

Liveness (something good happens): F good

Response (requests are eventually serviced): 
G(request → F serviced)

Reactiveness (infinite number of requests 
means an infinite number are serviced):
GF sent → GF received



Checking LTL
L(M) language of a model M (i.e., all 
possible executions of M)

L(φ) language of a formula φ (i.e., all 
traces satisfying φ)

We want to check that
L(M) ⊆ L(φ) ⇔ L(M) ∩ L(φ)c = ∅

⇔ L(M) ∩ L(¬φ) = ∅



Checking LTL (2)
We want to check that L(M) ∩ L(¬φ) = ∅

We can construct a Büchi automaton A¬φ 
such that L(¬φ) = L(A¬φ)

The state space SSM is essentially a Büchi 
automaton representing L(M)

We thus check whether L(SSM × A¬φ) = ∅

The product is (essentially) equal to the 
product construction for finite automata



Checking LTL (3)
A Büchi automaton is a finite automaton 
but in order for a word to be accepted, we 
must go thru an accept state infinitely often

As it is finite, this means we must visit (at 
least) one accept state infinitely often

This is only possible if we can find a loop 
containing the accept state from the initial 
state



Checking LTL (4)

We can find such “accepting” loops by 
nested depth-first search:

Do DFS from the initial state until an 
accepting state

Do DFS from the accepting state to see if 
we can reach the state again



Checking LTL (5)

Fφ
LTL formula

Model

Büchi automaton

State space

Product
automaton

NDFS

Accepting
cycle



LTL Checking in ASAP
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(generator/transition 
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Example:
Dining 
Philosophers

p = philisopher 1 eats

Philosopher 1 will always 
eat at some point

•φ’’ = F p
•φ’’’ = G F p

How do we reasonably 
enter formulas in the tool?



Entering Formulas
We already said that our atomic 
propositions are functions

It is possible to build a complex data 
structure representing the formulas and 
APs as functions

…which we do internally and immediately 
hide from users :-)



Demo: LTL

Show JoSEL task

Create formulas F p and G F p

Mapping can be reused

Show error traces

(Draw Büchi automaton)


