
State Space Exploration
and ASAP:

User Perspective
Michael Westergaard

Faculteit Wiskunde & Informatica
Technische Universiteit Eindhoven

m.westergaard@tue.nl

 := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

Outline

User perspective

JoSEL

Safety Properties

Simple reduction techniques

Linear temporal logic (LTL)

User Perspective

User Perspective

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

User Perspective

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

?

User Perspective

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

?

Verification Project

Verification of a a model is done using verification
projects consisting of

CPN Models to be analyzed

Queries expressing the properties we are
interested in

Reports reflecting results of
the queries

How to obtain results from models and
queries is described using verification jobs

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

?

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

Demo:
Dining Philosophers

Do a bit of simple simulation

Example:
Check for Deadlocks

Demo:
Check for Deadlocks

Creation of Verification project

Loading models

Creating a Verification job from a template

Executing a job template

Reporting

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

JoSEL: Background
ASAP Supports a wide range of state space methods

Depth-first and breadth-first traversal

On-line and off-line analysis

Bit-state hashing and hash
compaction

Sweep-line and ComBack
methods

Safety properties, LTL

JoSEL: Background

Applying a state space methods consists of

1. Specifying a model to analyze

2. Making queries expressing desired properties

3. Select method to use for verification

4. Set parameters of and instantiate
the selected method

5. Execute the traversal

6. Post-process and interpret the results

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

?

JoSEL: Aim

Develop a high-level language making it
possible to tie the model, queries and
desired state space method together

Support research, education and industrial
application scenarios

JoSEL: Requirements

Abstraction: Hide details from users

Low-level control: Make it possible to access
details when required for performance

Modularity: Facilitate construction and use of
building blocks (templates) in verification jobs

Extensibility: Allow extension for new
methods as needed

The hash function used to hash states when
storing in a hash table

JoSEL Overview

Graphical language
inspired by object flows
and hierarchy of CP-
nets

Basic unit is a task

Tasks have typed input
and output ports

JoSEL Overview

Graphical language
inspired by object flows
and hierarchy of CP-
nets

Basic unit is a task

Tasks have typed input
and output ports

JoSEL Overview

Graphical language
inspired by object flows
and hierarchy of CP-
nets

Basic unit is a task

Tasks have typed input
and output ports

Tasks
A task represents a single unit of work/
operation: instantiating a data type, loading
a file, checking a property, …

Input ports represent data required to
perform the operation

Output ports represent data produced by
the operation

Output and input ports can be connected

A verification job (job) is a set of tasks and
their connections

Output and input ports can be connected

A verification job (job) is a set of tasks and
their connections

Jobs

Connections represent flow of information

Ports can have multiple connections

Can represent split of information

Can represent multiple instantiations

Deadlock Checker

Deadlock Checker

Deadlock Checker

Load a model

Deadlock Checker

Load a model

…from
this file

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

…check the
safety property
for the model

Deadlock Checker

Load a model

…from
this file

Instantiate the
“no deadlock”

property

…check the
safety property
for the model

…and dump
the results in a

report

Abstraction

The “Safety Checker” is not a single unit of
work

It is in fact a macro representing multiple
tasks, such as instantiating a hash table
and performing a BFS

Abstraction

The “Safety Checker” is not a single unit of
work

It is in fact a macro representing multiple
tasks, such as instantiating a hash table
and performing a BFS

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Jobs can have
exported ports

Jobs can be
represented by
macro tasks
(macros)

Safety Checker

Safety Checker

Check the given
property using

the given
exploration

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Permanent storage
is a hash table

Safety Checker

Check the given
property using

the given
exploration

Stop after finding
at most 10 errors

Build error-traces
during exploration

Technical – just make
sure the letters match

Exploration
algorithm

Temporary
storage is a

queue

Permanent storage
is a hash table

Technical –
allows us to
only specify
the model

once on the
level above

Safety Checker

Hash Storage

Hash Storage

Instantiate the
permanent

storage

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

…and initially make
room for 1000 states

(expands automatically)

Hash Storage

Instantiate the
permanent

storage

…using this
(built-in) hash

function

…and initially make
room for 1000 states

(expands automatically)

Technical –
allows us to
only specify
the model

once on the
level above

Safety Properties

Sometimes we may want to check
properties other than absence of deadlocks

Custom properties are created using SML

ASAP automatically generates a template
formula tailored to a specific model

Example:
Mutual Exclusion

Example:
Mutual Exclusion

We want to check that two adjacent
philosophers cannot be eating at the same time

I.e., that they are not allowed access to a
shared resource (chop-stick) at the same time

This is equivalent to checking that if philosopher
p is eating, then philosopher p+1 is not (mod n)

A Bit of SML
Check if there is an element “p’ ” in “lst” that
satisfies the predicate “f(p’)”:
List.exists (fn p’ => f(p’)) lst

Check if “2 + 1 mod 7” belongs to a list, “lst”:
List.exists (fn p' => p’ = (2 + 1) mod 7) lst

Check if “p + 1 mod n” belongs to a list, “lst”:
List.exists (fn p' => p’ = (p + 1) mod n) lst

Check if there is an element “p” in “lst” such
that “p + 1 mod n” belongs to “lst”:
List.exists (fn p => List.exists
 (fn p' => p' = (p + 1) mod n) lst) lst

Yes, this is inefficient; we can sort
“lst” and only compare neighbors

Example:
Mutual Exclusion

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } = true
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state
	 end

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } =
 not (List.exists (fn p => List.exists
 (fn p' => p’ =
 (p + 1) mod (List.hd Philosophers)
) Eating) Eating)
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state

Example:
Mutual Exclusion

Demo:
Mutual Exclusion

Create property

Edit JoSEL job

Run checker

Example:
On-line vs. Off-line

Off-line Safety Checker

V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
for all t, s‘
 such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

for all v ∈ V do
if ¬I(v) then

return false
return true

This is off-line analysis; we first generate the state space and then we analyze it.

On-line Safety Checker
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

This is on-line

analysis; we analyze

the state space while

we generate it.

On-line Off-line

Finds errors faster

Uses less memory

Supported by ASAP

Can check additional properties
subsequently

Can (easier) provide error traces

Can check more properties

Supported by Design/CPN, CPN
Tools, and ASAP

On-line vs. Off-line

Demo:
On-line vs. Off-line

Show safety checker and time spent
checking property (maybe crank up size)

Change to off-line

Note that top-level has not changed

Show time spent checking property

Example:
Hash-compaction

Hash-compaction
A problem of the standard method is that
we use 1000 bytes per state, and 4 GB /
1000 = 4 • 106 states

What if we only use, say, 4 bytes per state;
then we can store 4 GB / 4 = 109 states

This is the rationale behind hash-
compaction

Observation
For a hash function h (any function, really) we have

s = s’ ⇒ h(s) = h(s’)

We use the terminology

s: full state descriptor (1000 bytes)

h(s): compressed state descriptor (4 bytes)

We do not have that h(s) = h(s’) ⇒ s = s’, but good

hash functions ensure that this is mostly true

If h(s) = h(s’) but s ≠ s’ we say we have a hash
collision

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors by

compressed state

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

As long as we
encounter no hash

collisions, this
algorithm works
identically to the

previous

Example

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h4

Example

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h4

Example

s1
h1

V:
W:

h1
s1

Example

s1
h1

V:
W:

h1

Example

s1

s2

s5
b

a

h1

V:
W:

h1

Example

s1

s2

s5
b

a

h1

h2

V:
W:

h1 h2
s2

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s2 s5

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s2 s5

Example

s1

s2

s5
b

a

h1

h3

h2

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3
s5

Example

s1

s2

s5

s3

b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4
s4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

b b

a a

h1

h3

h2 h3

h4
a

Incorrect edge

V:
W:

h1 h2 h3 h4

Example

s1

s2

s5

s3

s4

s6

b b

a a

h1

h3

h2 h3

h4
a

Never
discovered

Incorrect edge

V:
W:

h1 h2 h3 h4

Notes on Hash-compaction

We find most but not all states

Improve coverage by using larger hash values

Improve coverage using more than one hash
function

SHA-1 uses 160 bits (20 bytes) per state and
has no known collisions

Uses around as much time as the standard
algorithm and space is still O(# nodes) but with
a smaller factor

Demo:
Hash-compaction

Replace storage in standard method

We can but should not compute error
traces

If we use DFS traversal, computing error
traces is no problem

Numbers
Model Nodes NodesHC Mem MemHC % /st /stHC

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39603 23.6 20.8 88 625 550

196832 196798 174.0 4.9 3 927 26

215196 214569 43.0 5.2 12 210 25

107648 107647 61.2 45.7 75 596 445

207003 206921 87.4 5.1 6 443 26

4277126 4270926 - 113.5 - - 28

Numbers
Model Nodes NodesHC Mem MemHC % /st /stHC

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39603 23.6 20.8 88 625 550

196832 196798 174.0 4.9 3 927 26

215196 214569 43.0 5.2 12 210 25

107648 107647 61.2 45.7 75 596 445

207003 206921 87.4 5.1 6 443 26

4277126 4270926 - 113.5 - - 28

Example:
Bit-state Hashing

Bit-state Hashing
Hash-compaction uses a hash function to
compress state descriptor and stores the
compressed vectors

Bit-state hashing instead uses a hash
function to compute an index in an array
and sets a bit if a corresponding state has
been seen

We need an array of size 2|h(s)|/8 bytes,
e.g., 232/8 = 500 Mb to get same coverage
as hash compaction

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

This works exactly
like hash-compaction
with the same hash

function.

Bit-state Hashing vs.
Hash-compaction

Both allow us to increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

Hash-compaction uses memory proportional to
the size of the number of nodes, bit-state
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

Bit-state Hashing vs.
Hash-compaction

Both allow us to increase the size of the
compressed state descriptor to get better
coverage, but for bit-state hashing each extra
bit doubles memory usage

Hash-compaction uses memory proportional to
the size of the number of nodes, bit-state
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to
the number of hash functions we use, bit-state
hashing uses a constant amount of memory

More Hash Functions

Using 2 hash functions require that we
have 2 collisions instead of just one

But we may have a new kind of collisions,
h1(s1) = h2(s2)

Using more hash functions improves
coverage to a certain point where the bit-
array gets “filled up”, so collisions become
more common

Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and
read bits for both

(or all) hash
functions.

Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and
read bits for both

(or all) hash
functions.

; V[h2(s0)] := true

or ¬V[h2(s’)]
; V[h2(s’)] := true

Double Hashing
Calculating hash functions is actually pretty
expensive, so the time complexity grows with
the number of hash functions

Simply using hn(s) = n • h1(s) does not work!

It turns out that using hn(s) = n • h(s) + h’(s)
does work; this is called double hashing

Triple hashing works better but takes more time

Experiments show that using 15-20 hash
functions works well

Demo:
Bit-state Hashing

Replace storage on standard example

Numbers
Model Nodes NodesDH Mem MemDH % /st /stDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39604 23.6 32.0 135 625 846

196832 196832 174.0 12.3 7 927 66

215196 215196 43.0 12.3 28 210 60

107648 107648 61.2 55.4 90 596 540

207003 207003 87.4 12.3 14 443 62

4277126 4277125 - 12.1 - - 3

More Numbers
Model Nodes MemHC MemDH /stateHC /stateDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 20.8 32.0 550 846

196832 4.9 12.3 26 66

215196 5.2 12.3 25 60

107648 45.7 55.4 445 540

207003 5.1 12.3 26 62

4277126 113.5 12.1 28 3

Comparing the Top-levels

Example:
Drawing SS Graphs

Demo:
Drawing SS Graphs

Change safety checker to draw SS graph

Change model size to 2 philosophers

Play with layouts

Export to DOT and GML

Example:
Simple Protocol

Example:
Simple Protocol

10 packets

Example:
Simple Protocol

10 packets

Example:
Simple Protocol

3000 nodes

10 packets

Demo:
Error Traces

Displaying error trace

Displaying multiple error traces in a single
window

Linear Temporal Logic

Until now we have only dealt with safety
properties (i.e., what happens in one state)

Temporal logics allow us to talk about
several states

Propositional Logic
Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ

We call all such formulas Prop

A formula φ holds for a system if it holds in
all reachable states

We use SML
functions for atomic

propositions

We have not really
used connectors

until now

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ = • ⋁ •

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ = • ⋁ •

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ = • ⋁ •

φ’ = •

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ = • ⋁ •

φ’ = •

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ’ = • does not hold

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

AP = { •, •, • }
APs holding in a state are
shown inside the state

φ’ = • does not hold

…but after executing
“some” transitions, it

does…

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 always
eats: φ = p

Philosopher 1 never
eats: φ’ = ¬p

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 may eat?

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 may eat?

…we can actually check
this property:

• check φ’ = ¬p
•answer is the opposite

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 may eat?

…we can actually check
this property:

• check φ’ = ¬p
•answer is the opposite

φ’ = false ⇔
φ’ does not hold in

all states ⇔
¬p does not hold

in all states ⇔
p holds in at least

one state

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

…we cannot check this
(unless “eat at some
point” is an atomic

proposition)

PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next
state φ holds

PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next
state φ holds

φ holds until ψ
holds (and ψ

holds eventually)

PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next
state φ holds

φ holds until ψ
holds (and ψ

holds eventually)

φ holds at
some point

(future,
eventually,
possibly)

PLTL Syntax

Atomic Propositions

AP = { p, q, r, … }

Syntax

φ ::= p | ¬φ | φ → ψ | X φ | φ U ψ

Add some syntactical sugar

Fφ ≣ true U φ (also written ⃟φ)

Gφ ≣ ¬F¬φ (also written ⃤φ)

In the next
state φ holds

φ holds until ψ
holds (and ψ

holds eventually)

φ holds at
some point

(future,
eventually,
possibly)

φ holds in all
states

(everywhere,
globally,

necessarily)

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

• U •

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

• U •

F •

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

• U •

G •

F •

Example

{ •, • } { •, •, • } { •, •, • } { •, • } { •, •, • }

X •

• U •

G •

F •

For a property to hold for a
state space, it must hold along

all (infinite) paths

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

Example

{ •, •, • }

{ •, • }

{ • }

{ •, • }

{ •, •, • }

F •
FG •
GF •
• → X •

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

•φ’’ = F p
•φ’’’ = G F p

LTL Examples

Safety (nothing bad happens): G ¬bad

Liveness (something good happens): F good

Response (requests are eventually serviced):
G(request → F serviced)

Reactiveness (infinite number of requests
means an infinite number are serviced):
GF sent → GF received

Checking LTL
L(M) language of a model M (i.e., all
possible executions of M)

L(φ) language of a formula φ (i.e., all
traces satisfying φ)

We want to check that
L(M) ⊆ L(φ) ⇔ L(M) ∩ L(φ)c = ∅

⇔ L(M) ∩ L(¬φ) = ∅

Checking LTL (2)
We want to check that L(M) ∩ L(¬φ) = ∅

We can construct a Büchi automaton A¬φ
such that L(¬φ) = L(A¬φ)

The state space SSM is essentially a Büchi
automaton representing L(M)

We thus check whether L(SSM × A¬φ) = ∅

The product is (essentially) equal to the
product construction for finite automata

Checking LTL (3)
A Büchi automaton is a finite automaton
but in order for a word to be accepted, we
must go thru an accept state infinitely often

As it is finite, this means we must visit (at
least) one accept state infinitely often

This is only possible if we can find a loop
containing the accept state from the initial
state

Checking LTL (4)

We can find such “accepting” loops by
nested depth-first search:

Do DFS from the initial state until an
accepting state

Do DFS from the accepting state to see if
we can reach the state again

Checking LTL (5)

Fφ
LTL formula

Model

Büchi automaton

State space

Product
automaton

NDFS

Accepting
cycle

LTL Checking in ASAP

LTL Checking in ASAP

We return a model
(generator/transition
relation) rather than

an automaton

LTL Checking in ASAP

We return a model
(generator/transition
relation) rather than

an automaton
We return a model

(generator/transition
relation) rather than

an automaton

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

•φ’’ = F p
•φ’’’ = G F p

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0++
1`1++
1`2++
1`3++
1`4

51`0++
1`1++
1`2++
1`3++
1`4

Example:
Dining
Philosophers

p = philisopher 1 eats

Philosopher 1 will always
eat at some point

•φ’’ = F p
•φ’’’ = G F p

How do we reasonably
enter formulas in the tool?

Entering Formulas
We already said that our atomic
propositions are functions

It is possible to build a complex data
structure representing the formulas and
APs as functions

…which we do internally and immediately
hide from users :-)

Demo: LTL

Show JoSEL task

Create formulas F p and G F p

Mapping can be reused

Show error traces

(Draw Büchi automaton)

