
CPN / ASAP Tutorial - 1

Part 3: Advanced
State Space Methods

CPN / ASAP Tutorial - 2

Overview
Will present three examples of advanced state
space methods for alleviating state explosion.

The comback method:
Relies on hash-compaction for compact storage of states.
State reconstruction to ensure full state space coverage.

The sweep-line method:
Exploits progress to delete states from memory during state
space exploration.

State space partitioning:
Divides the state space into partitions.
Applied in distributed and external memory model checking.

CPN / ASAP Tutorial - 3

The ComBack Method -
Extending Hash Compaction
with Backtracking
The ComBack Method – Extending Hash Compaction
with Backtracking.
M. Westergaard, L.M. Kristensen, G.S. Brodal, and L.
Arge. Proceedings of Petri Nets 2010, LNCS 4546, pp.
445-464, Springer, 2007.

The ComBack Method Revisited – Caching Strategie
and Extensions with Delayed Duplicate Detection.
S. Evangelista, M. Westergaard, L.M. Kristensen.
Transactions on Petri Nets and Other Models of
Concurrency, LNCS 5800 pp. 189-215, Springer, 2009.

http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps

CPN / ASAP Tutorial - 5

The Hash Compaction Method
[Wolper&Leroy’93, Stern&Dill’95]

Relies on a hash function H for memory efficient
representation of visited (explored) states:

Only the compressed state descriptor is stored
in the state table of visited states.

H : S {0,1}w

01100011000110001110000111000101

Compressed state descriptor

(4-8 bytes)

Full state descriptor

(100-1000 bytes)

s

CPN / ASAP Tutorial - 6

s1

Example: Hash Compaction
Cannot guarantee full state space coverage due
to hash collisions:

b

s6

s4
s3

s2

s5

b
a

a

ab

b
h1h3

h3
h4

h2

h3

State table: h1 h2 h3

s1
b

s6

s4

s2

b

a

a

h4

Compressed state
descriptor

CPN / ASAP Tutorial - 7

Reconstruction of full state descriptors to resolve
hash collisions during state space exploration.

Reconstruction is achieved by augmenting the
hash compaction method:

A state number is assigned to each visited state.

The state table stores for each compressed state descriptor a
collision list of state numbers.

A backedge table stores a backedge for each state number of a
visited state.

The Comback Method

to detect (potential) hash collisions

to reconstruct full state descriptors

CPN / ASAP Tutorial - 8

Example: The ComBack Method

s1
b

s6

s4
s3

s2

s5

b
a

a

ab

b
h1h3

h3
h4

h2

h3

State table Backedge table

h1

h2

h4

1

2

4 6

(1,a)

1

3

4

5

6

2

(1,b)

(2,a)

(4,a)

(4,b)

1

2 h3 3

3 5

State
Reconstruction

(1,b)

4

5

6

(1,b)

(1,a)(2,a)

(1,a)(4,a) (2,a)

3

3

4

5

S6 ≠ S3

S6 ≠ S5

S3 ≠ S5

S4 = S4

Compressed state
descriptor

collision lists backedges

CPN / ASAP Tutorial - 9

Collision list

Backedge table

?
=

Transition relation

CPN / ASAP Tutorial - 10

Main Theorem
ComBack algorithm terminates after having
processed all reachable states exactly one.

The elements in the state table and the
backedge table can be represented using:

Number of state reconstructions bounded by:

Overhead compared to hash
compaction

CPN / ASAP Tutorial - 11

Implementation
Implementation in ASAP:

State table with collision lists implemented using a hash table.
Backedge table implemented as a dynamic array.
Compressed state descriptors and state numbers: 31 bit UI.
Breadth-first (BFS) and depth-first search (DFS) implemented.
Variant of ComBack method with caching implemented.

Performance of ComBack method compared to:
Standard full state space exploration (BFS and DFS).
Hash compaction method (BFS and DFS).

CPN / ASAP Tutorial - 12

Summary of Experimental Results

Model Method Nodes Arcs %Time %Space %Time %Space

DB ComBack 196,832 1,181,001 37 10 39 26
HashComp 196,798 1,180,790 18 3 21 21
Standard 196,832 1,181,001 100 100 106 100

SW ComBack 215,196 1,242,386 178 42 258 48
HashComp 214,569 1,238,803 92 12 103 23
Standard 215,196 1,242,386 100 100 111 100

TS ComBack 107,648 1,017,490 383 85 198 30
HashComp 107,647 1,017,474 93 75 96 24
Standard 107,648 1,017,490 100 100 106 73

ERDP ComBack 207,003 1,199,703 180 34 353 42
HashComp 206,921 1,199,200 93 6 100 21
Standard 207,003 1,199,703 100 100 115 101

ERDP ComBack 4,277,126 31,021,101 - - - -
HashComp 4,270,926 30,975,030 - - - -

DFS BFS
ComBack performance relative to
standard DF full state space exploration

CPN / ASAP Tutorial - 13

Conclusions

ComBack method for alleviating state explosion:
Extension of the hash compaction to guarantee full coverage.
Search-order independent and transparent state
reconstruction.

Practical experiments:
Uses more time and space than hash compaction, less
memory than standard full state space exploration.
ComBack method suited for late phases of the verification
process.

CPN / ASAP Tutorial - 14

The Sweep-Line Method

A Sweep-Line Method for State Space Exploration
S. Christensen, L.M. Kristensen and T. Mailund
Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2001),
LNCS 2031 pp. 450-464.Springer, 2000.

A Generalised Sweep-Line Method for Safety Properties
L.M. Kristensen and T. Mailund
Proceedings of Formal Methods Europe (FME 2002),
LNCS 2391 pp. 549-567, Springer, 2002.

Memory usage

time

Peak
memory

ordinary

sweep-line

http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/fme2002.ps

CPN / ASAP Tutorial - 15

The Sweep-line Method
The basic idea is to exploit a certain kind of progress
exhibited by many systems:

Retransmission counters and sequence numbers in protocols.
Phases in transaction protocol.
Control flow in programs.

Time in timed CPN models (value of global clock).

Makes it possible to explore all the reachable states, while
only storing small state space fragments in memory:

Memory usage

time

Peak
memory

ordinary

sweep-line

This means that the
peak memory usage
is reduced.
Aimed at on-the-fly
verification of safety
properties.

CPN / ASAP Tutorial - 16

Example CPN Model
Stop-and-wait communication protocol:

Sender keep sending the same data packet until a
matching acknowledgement is received.
Sequence numbers are used to match data packets
and acknowledgements.

CPN / ASAP Tutorial - 17

Measures the progress of the
transmission.

The token value on NextRec
increases during execution.
It is never decreased.

Protocol Example

CPN / ASAP Tutorial - 18

Initial fragment of state space

Layer 2

Layer 1

1

14

19

13 9

68

5 3 2

4

28 15 10 720

NextRec: 1`1

NextRec: 1`2

No backward
arcs from layer
2 to layer 1

Each state has
successor states
either in the
same layer or in
higher layers –
never in lower
layers.

Layer 1 states
can be deleted
from memory
when they have
been processed.

Follows from
progress
property

CPN / ASAP Tutorial - 19

Process states layer by layer
Process the states (i.e., calculate successor states) one
layer at a time (least progress first-order).

Move from one layer to the next when all states in the
first layer have been processed.
Delete states when moving from one layer to the next.

A conceptual sweep-line moves through the state space
layer by layer:

All states in the layer are “on” the sweep-line.
All new states calculated are either on the sweep-line
or in front of the sweep-line (i.e., in a higher layer).

CPN / ASAP Tutorial - 20

Progress Measure
The progress can be captured by a progress measure
mapping each state into a progress value.

fun Progress'Receiver { NextRec } =
List.hd NextRec

Implemented as a function that extract
the colour of the token on NextRec:

This is an example of a
monotonic progress measure:

s → s’ ⇒ progress s ≤ progress s’

Monotonicity can be checked fully
automatically.

CPN / ASAP Tutorial - 21

Sample Experimental Results
Limit Packets Nodes Arcs Nodes (peak) Nodes Time

1 4 33 44 33 1.00 1.00

2 4 293 764 134 2.19 1.00

3 4 1,829 6,860 758 2.41 1.00

4 4 9,025 43,124 4,449 2.03 1.78

5 4 37,477 213,902 20,826 1.80 1.65

6 4 136,107 891,830 82,586 1.65 1.51

4 5 20,016 99,355 8,521 2.35 1.95

4 6 38,885 198,150 14,545 2.67 2.19

4 7 68,720 356,965 22,905 3.00 2.27

4 8 113,121 596,264 33,985 3.33 2.41

Standard method Sweep-line GainConfiguration

CPN / ASAP Tutorial - 22

Generalised Sweep-Line Method
Monotonic progress measures are sufficient for
systems exhibiting global progress.
Many systems exhibit local progress and
occasional regress (e.g., sequence number wrap, control flow loops,…):

progress

s5

s4

s3

s2s0

s1

s9 s10

s7

s8

s6

Cannot determine
whether a
destination state of
a regress has
already been
explored.
Termination is no
longer guaranteed.

CPN / ASAP Tutorial - 23

Generalised Sweep-Line Method
Detect backwards/regress edges during exploration.
Mark destination of regress edges persistent.
Conduct multiple sweeps using persistent states as roots.

s5

s4

s3

s2s0

s1

s9 s10

s7

s8

s6

CPN / ASAP Tutorial - 24

Algorithm and Implementation

Unprocessed
implemented as a
priority queue on
progress values.
Deletion of states
can be implemented
efficiently by
detecting when the
sweep-line moves.
Sharing of substate
requires a reference
count mechanism.

CPN / ASAP Tutorial - 25

Counter Example Generation
External storage can be exploited to support
counter example generation:

Store the states being
deleted from memory
sequentially on disk.
Store an index pointing to
the generating predecessor
of each state.
Following index pointers
backwards yields the
counter example.

s5

s4

s3

s2s0

s1

s7

s8

s6

s0 s1 s2 s3 s4 s5 s6 s7 s8

Index7

Index pointer

21 34 45 59 67 81 9771

7 7 7 21 34 59 59 67

CPN / ASAP Tutorial - 26

Beyond Safety Properties
Classical CTL and LTL model checking algorithms
are not compatible:

Accesses predecessor states (e.g., CTL).
Relies on a non-progress first search order (e.g., LTL).

The sweep through the state space can be used
to compute a Kripke structure:

p1s5

s4

s3

s2s0

s1

s7

s8

s6

States are not deleted
but instead replaced by
a (small) bit vector.
Standard model
checking algorithm can
be used.

p2 p3

Atomic propositions:
(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1) (0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

CPN / ASAP Tutorial - 27

Dynamic State Space
Partitioning for External
Memory Model Checking

Dynamic State Space Partitioning for External Memory
Model Checking. S. Evangelista and L.M. Kristensen.. In
Proc. Formal Methods for Industrial Critical Systems,
LNCS 5825, pp. 70-85. Springer, 2009.

CPN / ASAP Tutorial - 28

State Space Partitioning
The state explosion problem can be addressed
by dividing the state space into partitions:

Distributed model checking:
State space exploration is conducted
using a set of machines / processes.
Each process is responsible for
exploring the states of a partition.

External-memory model checking:
One partition is loaded into memory at
a time.
The remaining partitions are stored in
external memory (disk).

Requires a partitioning function mapping from
the set of states into partitions.

CPN / ASAP Tutorial - 29

External-Memory Algorithm
Uses a queue Qi of unprocessed states, a set of
visited states Vi, and a file Fi for each partition i:

CPN / ASAP Tutorial - 30

Partitioning Functions
Desirable properties:

Limit the number of cross transitions to reduce disk access
and network communication.
Even distribution of states into partitions to ensure that all
processes receives a comparable workload.

Main contributions of this work:
1. A dynamic partitioning scheme based on partition refinement

and compositional partitioning functions.
2. A set static and dynamic heuristics for implementing partition

refinement in the context of external memory model checking.
3. An implementation and experimental evaluation of the

dynamic partitioning scheme and the associated heuristics.

CPN / ASAP Tutorial - 31

Dynamic Partitioning
Assumes that the system states can be
represented as a vector of state components:

S = (C1,C2 , … , Cn)

A partition is split into sub-
partitions (refined) when it
exceeds the available memory.

The refinement is realised by
taking into account an
additional state component.

A partition is determined from a subset of the
state components:

CPN / ASAP Tutorial - 32

Partitioning Diagrams
A compositional partitioning function can be
represented as a partitioning diagram:

Branching nodes
(branching functions)

Single root node

Terminal nodes
(state partitions)

The partition of a state is determined by applying
the branching functions starting from the root.

State s

g(s) g(s)=f

h(s) h(s)=a

i(s) i(s)=0 p1

CPN / ASAP Tutorial - 33

Example: Partition Refinement
A state vector with three state components
(b ,c ,i): {t,f} {t,f} {0,1,2,3}

CPN / ASAP Tutorial - 34

Heuristics
The refinement step requires the selection of a
state component to be used for the refinement.

Offline Static Analysis (SA):
Count for each state component, the number of events in the
analysed system model that modifies it.
Among candidate components, select the component with the
lowest count (to reduce cross transitions).

Offline Dynamic State Space Sample (SS):
Explore a sample of the state space and count the number of
times a state component is modified (randomized search).
Among candidate components, select the component with the
lowest count (to reduce cross transitions).

CPN / ASAP Tutorial - 35

Online Heuristics
Dynamic Randomized (DR):

Picks a random state component not yet considered.
Serve as a baseline for the other dynamic heuristics.

Dynamic Event Execution (DE):
Counts during state space exploration the number of times a
component has been modified (select lowest count).

Dynamic Distribution (DD):
Select the component that gives the lowest standard
deviation in sub-partition sizes.

Dynamic Distribution and Event Execution (DDE):
Combines heuristics DE and DD:

CPN / ASAP Tutorial - 36

Experimental Context
Implementation in the ASAP model checking
platform [www.daimi.au.dk/~ascoveco/download.html]:

The PART external memory algorithm [Bao, Jones (TACAS’05)]:
uses a global hash function on the state vector for partitioning.
A static partitioning scheme [Lerda, Sisto (SPIN’99)]: The
partitions are determined from a single state component.
A semi-dynamic partitioning scheme [Lerda, Visser (SPIN’01)]:
partitions consists of static classes that can be reassigned.

Experiments conducted on models from the BEEM
benchmark database [Pelánek (SPIN’07)].

Illustrates the use of ASAP as a multi-formalism
platform.

http://www.daimi.au.dk/~ascoveco/download.html

CPN / ASAP Tutorial - 37

Experimental Results (1)

Performance is relative to the PART algorithm
with a global hash code (Static + GHC).

Measures the number of cross transitions (CT)
and disk accesses (IO):

SPIN’99 SPIN’01PART

CPN / ASAP Tutorial - 38

Experimental Results (2)
Summary across 35 model instances:

Main observations:
1. Compositional dynamic refinement generally outperforms

the earlier approaches (GHC and LHC).
2. DR generally worse than all other heuristics – and always

worse than SS and DE which performed comparable.
3. A general correlation between disk accesses and cross

transitions: except when partition distribution is uneven.

CPN / ASAP Tutorial - 39

Partition Overflow
Dynamic partitioning can avoid overflow when
some partition cannot be represented in memory.
Ratio of overflowing states* with related
approaches [SPIN’99, SPIN’01]:

*A partition size limit of 1% of the total state space.

CPN / ASAP Tutorial - 40

Conclusions and Future Work

A dynamic partitioning scheme applicable for
external memory and distributed model checking.
The heuristics have been evaluated in the context
of external memory model checking.
Improves cross transitions and disk access
performance compared to earlier related work.
The scheme can ensure an upper bound on size
of any partition loaded into memory.
Heuristics are still to be explored in the context
of distributed model checking.

	Slide Number 1
	Overview
	The ComBack Method - Extending Hash Compaction with Backtracking
	The Hash Compaction Method [Wolper&Leroy’93, Stern&Dill’95]
	Example: Hash Compaction
	The Comback Method
	Example: The ComBack Method
	Slide Number 9
	Main Theorem
	Implementation
	Summary of Experimental Results
	Conclusions
	The Sweep-Line Method
	The Sweep-line Method
	Example CPN Model
	Protocol Example
	Initial fragment of state space
	Process states layer by layer
	Progress Measure
	Sample Experimental Results
	Generalised Sweep-Line Method
	Generalised Sweep-Line Method
	Algorithm and Implementation
	Counter Example Generation
	Beyond Safety Properties
	Dynamic State Space Partitioning for External Memory Model Checking
	State Space Partitioning
	External-Memory Algorithm
	Partitioning Functions
	Dynamic Partitioning
	Partitioning Diagrams
	Example: Partition Refinement
	Heuristics
	Online Heuristics
	Experimental Context
	Experimental Results (1)
	Slide Number 38
	Partition Overflow
	Conclusions and Future Work

