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Part 3: Advanced 
State Space Methods
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Overview
Will present three examples of advanced state 
space methods for alleviating state explosion.

The comback method:
Relies on hash-compaction for compact storage of states.
State reconstruction to ensure full state space coverage.

The sweep-line method:
Exploits progress to delete states from memory during state 
space exploration.

State space partitioning:
Divides the state space into partitions.
Applied in distributed and external memory model checking.



CPN / ASAP Tutorial - 3

The ComBack Method -
Extending Hash Compaction 
with Backtracking
The ComBack Method – Extending Hash Compaction 
with  Backtracking. 
M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. 
Arge. Proceedings of Petri Nets 2010,  LNCS 4546, pp. 
445-464, Springer, 2007.

The ComBack Method Revisited – Caching Strategie
and Extensions with Delayed Duplicate Detection. 
S.  Evangelista, M. Westergaard, L.M. Kristensen. 
Transactions on Petri Nets and Other Models of 
Concurrency,  LNCS 5800 pp. 189-215, Springer, 2009. 

http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
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The Hash Compaction Method 
[Wolper&Leroy’93, Stern&Dill’95]

Relies on a hash function H for memory efficient 
representation of visited (explored) states:

Only the compressed state descriptor is stored 
in the state table of visited states.

H : S {0,1}w

01100011000110001110000111000101

Compressed state descriptor

(4-8 bytes)

Full state descriptor

(100-1000 bytes)

s
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s1

Example: Hash Compaction
Cannot guarantee full state space coverage due 
to hash collisions:
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Reconstruction of full state descriptors to resolve 
hash collisions during state space exploration.

Reconstruction is achieved by augmenting the 
hash compaction method:

A state number is assigned to each visited state.

The state table stores for each compressed state descriptor a 
collision list of state numbers.

A backedge table stores a backedge for each state number of a 
visited state. 

The Comback Method

to detect (potential) hash collisions

to reconstruct full state descriptors
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Example: The ComBack Method
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Collision list

Backedge table

?
=

Transition relation
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Main Theorem
ComBack algorithm terminates after having 
processed all reachable states exactly one.

The elements in the state table and the 
backedge table can be represented using:

Number of state reconstructions bounded by:

Overhead compared to hash 
compaction
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Implementation
Implementation in ASAP:

State table with collision lists implemented using a hash table.
Backedge table implemented as a dynamic array.
Compressed state descriptors and state numbers: 31 bit UI.
Breadth-first (BFS) and depth-first search (DFS) implemented.
Variant of ComBack method with caching implemented.

Performance of ComBack method compared to:
Standard full state space exploration (BFS and DFS).
Hash compaction method (BFS and DFS).
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Summary of Experimental Results

Model Method Nodes Arcs %Time %Space %Time %Space

DB ComBack 196,832 1,181,001 37 10 39 26
HashComp 196,798 1,180,790 18 3 21 21
Standard 196,832 1,181,001 100 100 106 100

SW ComBack 215,196 1,242,386 178 42 258 48
HashComp 214,569 1,238,803 92 12 103 23
Standard 215,196 1,242,386 100 100 111 100

TS ComBack 107,648 1,017,490 383 85 198 30
HashComp 107,647 1,017,474 93 75 96 24
Standard 107,648 1,017,490 100 100 106 73

ERDP ComBack 207,003 1,199,703 180 34 353 42
HashComp 206,921 1,199,200 93 6 100 21
Standard 207,003 1,199,703 100 100 115 101

ERDP ComBack 4,277,126 31,021,101 - - - -
HashComp 4,270,926 30,975,030 - - - -

DFS BFS
ComBack performance relative to 
standard DF full state space exploration
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Conclusions

ComBack method for alleviating state explosion:
Extension of the hash compaction to guarantee full coverage.
Search-order independent and transparent state 
reconstruction.

Practical experiments:
Uses more time and space than hash compaction, less 
memory than standard full state space exploration.
ComBack method suited for late phases of the verification 
process.
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The Sweep-Line Method

A Sweep-Line Method for State Space Exploration 
S. Christensen, L.M. Kristensen and T. Mailund
Proceedings of Tools and Algorithms for the 
Construction and Analysis of Systems (TACAS 2001), 
LNCS 2031 pp. 450-464.Springer, 2000.

A Generalised Sweep-Line Method for Safety Properties 
L.M. Kristensen and T. Mailund
Proceedings of Formal Methods Europe (FME 2002), 
LNCS 2391 pp. 549-567, Springer, 2002.

Memory usage

time

Peak
memory

ordinary

sweep-line

http://www.daimi.au.dk/~mailund/ps/tacas2001.ps
http://www.daimi.au.dk/~mailund/ps/fme2002.ps
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The Sweep-line Method
The basic idea is to exploit a certain kind of progress
exhibited by many systems:

Retransmission counters and sequence numbers in protocols.
Phases in transaction protocol.
Control flow in programs.

Time in timed CPN models (value of global clock).

Makes it possible to explore all the reachable states, while 
only storing small state space fragments in memory:

Memory usage

time

Peak
memory

ordinary

sweep-line

This means that the 
peak memory usage
is reduced.
Aimed at on-the-fly 
verification of safety 
properties.
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Example CPN Model
Stop-and-wait communication protocol:

Sender keep sending the same data packet until a 
matching acknowledgement is received.
Sequence numbers are used to match data packets 
and acknowledgements.
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Measures the progress of the 
transmission.

The token value on NextRec 
increases during execution.
It is never decreased.

Protocol Example
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Initial fragment of state space

Layer 2

Layer 1

1
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13 9

68

5 3 2

4

28 15 10 720

NextRec: 1`1

NextRec: 1`2

No backward 
arcs from layer 
2 to layer 1

Each state has 
successor states 
either in the 
same layer or in 
higher layers –
never in lower 
layers.

Layer 1 states 
can be deleted 
from memory 
when they have 
been processed.

Follows from 
progress 
property
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Process states layer by layer
Process the states (i.e., calculate successor states) one 
layer at a time (least progress first-order).

Move from one layer to the next when all states in the 
first layer have been processed.
Delete states when moving from one layer to the next.

A conceptual sweep-line moves through the state space 
layer by layer:

All states in the layer are “on” the sweep-line.
All new states calculated are either on the sweep-line 
or in front of the sweep-line (i.e., in a higher layer). 
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Progress Measure
The progress can be captured by a progress measure
mapping each state into a progress value. 

fun Progress'Receiver { NextRec } = 
List.hd NextRec

Implemented as a function that extract 
the colour of the token on NextRec:

This is an example of a 
monotonic progress measure:

s → s’ ⇒ progress s ≤  progress s’

Monotonicity can be checked fully 
automatically.
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Sample Experimental Results
Limit Packets Nodes Arcs Nodes (peak) Nodes Time

1 4 33 44 33 1.00 1.00

2 4 293 764 134 2.19 1.00

3 4 1,829 6,860 758 2.41 1.00

4 4 9,025 43,124 4,449 2.03 1.78

5 4 37,477 213,902 20,826 1.80 1.65

6 4 136,107 891,830 82,586 1.65 1.51

4 5 20,016 99,355 8,521 2.35 1.95

4 6 38,885 198,150 14,545 2.67 2.19

4 7 68,720 356,965 22,905 3.00 2.27

4 8 113,121 596,264 33,985 3.33 2.41

Standard method Sweep-line GainConfiguration
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Generalised Sweep-Line Method
Monotonic progress measures are sufficient for 
systems exhibiting global progress.
Many systems exhibit local progress and 
occasional regress (e.g., sequence number wrap, control flow loops,…):

progress

s5

s4

s3

s2s0

s1

s9 s10

s7

s8

s6

Cannot determine 
whether a 
destination state of 
a regress has 
already been 
explored.
Termination is no 
longer guaranteed.
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Generalised Sweep-Line Method
Detect backwards/regress edges during exploration.
Mark destination of regress edges persistent.
Conduct multiple sweeps using persistent states as roots.

s5

s4

s3

s2s0

s1

s9 s10

s7

s8

s6
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Algorithm and Implementation

Unprocessed 
implemented as a 
priority queue on 
progress values.
Deletion of states 
can be implemented 
efficiently by 
detecting when the 
sweep-line moves.
Sharing of substate
requires a reference 
count mechanism.
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Counter Example Generation
External storage can be exploited to support 
counter example generation:

Store the states being 
deleted from memory 
sequentially on disk.
Store an index pointing to
the generating predecessor 
of each state.
Following index pointers 
backwards yields the 
counter example.

s5

s4

s3

s2s0

s1

s7

s8

s6

s0 s1 s2 s3 s4 s5 s6 s7 s8

Index7

Index pointer

21 34 45 59 67 81 9771

7 7 7 21 34 59 59 67
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Beyond Safety Properties
Classical CTL and LTL model checking algorithms 
are not compatible:

Accesses predecessor states (e.g., CTL).
Relies on a non-progress first search order (e.g., LTL).

The sweep through the state space can be used 
to compute a Kripke structure:

p1s5

s4

s3

s2s0

s1

s7

s8

s6

States are not deleted 
but instead replaced by 
a (small) bit vector.
Standard model
checking algorithm can 
be used.

p2 p3

Atomic propositions:
(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1) (0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)
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Dynamic State Space 
Partitioning for External 
Memory Model Checking

Dynamic State Space Partitioning for External Memory
Model Checking. S. Evangelista and L.M. Kristensen.. In 
Proc. Formal Methods for Industrial Critical Systems, 
LNCS 5825, pp. 70-85. Springer, 2009.
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State Space Partitioning
The state explosion problem can be addressed 
by dividing the state space into partitions:

Distributed model checking:
State space exploration is conducted 
using a set of machines / processes.
Each process is responsible for 
exploring the states of a partition.

External-memory model checking:
One partition is loaded into memory at 
a time.
The remaining partitions are stored in 
external memory (disk).

Requires a partitioning function mapping from 
the set of states into partitions.   
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External-Memory Algorithm
Uses a queue Qi of unprocessed states, a set of 
visited states Vi, and a file Fi for each partition i:
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Partitioning Functions
Desirable properties:

Limit the number of cross transitions to reduce disk access 
and network communication.
Even distribution of states into partitions to ensure that all 
processes receives a comparable workload.

Main contributions of this work:
1. A dynamic partitioning scheme based on partition refinement 

and compositional partitioning functions.
2. A set static and dynamic heuristics for implementing partition 

refinement in the context of external memory model checking.
3. An implementation and experimental evaluation of the 

dynamic partitioning scheme and the associated heuristics.
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Dynamic Partitioning
Assumes that the system states can be 
represented as a vector of state components:

S = (C1,C2 , … , Cn)

A partition is split into sub-
partitions (refined) when it 
exceeds the available memory.

The refinement is realised by 
taking into account an 
additional state component.

A partition is determined from a subset of the 
state components:
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Partitioning Diagrams
A compositional partitioning function can be 
represented as a partitioning diagram:

Branching nodes
(branching functions)

Single root node

Terminal nodes
(state partitions)

The partition of a state is determined by applying 
the branching functions starting from the root.

State s

g(s) g(s)=f

h(s) h(s)=a

i(s) i(s)=0 p1
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Example: Partition Refinement
A state vector with three state components 
(b           ,c            ,i ): {t,f} {t,f} {0,1,2,3}
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Heuristics
The refinement step requires the selection of a 
state component to be used for the refinement.

Offline Static Analysis (SA):
Count for each state component, the number of events in the 
analysed system model that modifies it.
Among candidate components, select the component with the 
lowest count (to reduce cross transitions).

Offline Dynamic State Space Sample (SS):
Explore a sample of the state space and count the number of 
times a state component is modified (randomized search).
Among candidate components, select the component with the 
lowest count (to reduce cross transitions).
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Online Heuristics
Dynamic Randomized (DR):

Picks a random state component not yet considered.
Serve as a baseline for the other dynamic heuristics.

Dynamic Event Execution (DE):
Counts during state space exploration the number of times a 
component has been modified (select lowest count).

Dynamic Distribution (DD):
Select the component that gives the lowest standard 
deviation in sub-partition sizes.

Dynamic Distribution and Event Execution (DDE):
Combines heuristics DE and DD:
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Experimental Context
Implementation in the ASAP model checking 
platform [ www.daimi.au.dk/~ascoveco/download.html ]:

The PART external memory algorithm [Bao, Jones (TACAS’05)]: 
uses a global hash function on the state vector for partitioning.
A static partitioning scheme [Lerda, Sisto (SPIN’99)]: The 
partitions are determined from a single state component.
A semi-dynamic partitioning scheme [Lerda, Visser (SPIN’01)]: 
partitions consists of static classes that can be reassigned.

Experiments conducted on models from the BEEM 
benchmark database [Pelánek (SPIN’07)].

Illustrates the use of ASAP as a multi-formalism 
platform.

http://www.daimi.au.dk/~ascoveco/download.html
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Experimental Results (1)

Performance is relative to the PART algorithm 
with a global hash code (Static + GHC).

Measures the number of cross transitions (CT) 
and disk accesses (IO):

SPIN’99 SPIN’01PART
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Experimental Results (2)
Summary across 35 model instances:

Main observations:
1. Compositional dynamic refinement generally outperforms 

the earlier approaches (GHC and LHC).
2. DR generally worse than all other heuristics – and always 

worse than SS and DE which performed comparable.
3. A general correlation between disk accesses and cross 

transitions: except when partition distribution is uneven.
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Partition Overflow
Dynamic partitioning can avoid overflow when 
some partition cannot be represented in memory.
Ratio of overflowing states* with related 
approaches [SPIN’99, SPIN’01]:

*A partition size limit of 1% of the total state space.
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Conclusions and Future Work

A dynamic partitioning scheme applicable for 
external memory and distributed model checking.
The heuristics have been evaluated in the context 
of external memory model checking.
Improves cross transitions and disk access 
performance compared to earlier related work.
The scheme can ensure an upper bound on size 
of any partition loaded into memory.
Heuristics are still to be explored in the context 
of distributed model checking.
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