
State Space Exploration
and ASAP:

Research Perspective
Michael Westergaard

Faculteit Wiskunde & Informatica
Technische Universiteit Eindhoven

m.westergaard@tue.nl

 := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

mailto:mw@cs.au.dk
mailto:mw@cs.au.dk

Outline

Advanced methods in ASAP

Integrating new methods

Briefly Access/CPN

Benchmarking

Status and outlook

Example:
The ComBack Method

Briefly:
The ComBack Method

Use the hash compaction method

Use a table of back-edges to resolve hash
conflicts

Use caching to improve speed

Demo:
The ComBack Method

Create new from template

Run check

Example:
The Sweep-line Method

Briefly:
The Sweep-line Method

Uses notion of progress in model identified
by a progress measure

A conceptual sweep-line marks a border
between states that have already been
discovered

Only states in front of the sweep-line is
kept in memory

Briefly:
A Progress Measure

ASAP automatically generates a template
progress measure (much like queries)

We just have to fill in the blanks

Let’s use the number of eating philosophers
as the progress value

fun query (state, events) =
	 let
	 	 fun query'New_Page { Waiting, Has_One, Eating,
 Philosophers, Initialized,
 Chopsticks } =
 List.length Eating
	 	 fun query'state { New_Page} = query'New_Page New_Page
	 in
	 	 query'state state
	 end

Example:
Progress Meassure

Demo:
The Sweep-line Method

Create new from template

Create progress measure

Run check

Combine with hash compaction

Example:
The Sweep-line Method

The sweep-line is defined completely outside of
the ASAP main application (proof-of-concept,
eat-your-own-dog-food, …)
Yet…

We can add it in the JoSEL editor
We can use it with the safety-checker
We can combine it with hash compaction
We can create progress measures as easily
as we create safety properties
The progress measure shows up in the report

Overview
Adding new methods to the GUI

Eclipse’s plug-in system

Adding new methods to the engine

Extending JoSEL

Adding entries to the report

Briefly: ACCESS/CPN

Basically, this is Easy!

ASAP is an Eclipse Rich Client application,
so we have access to Eclipse’s plug-in
mechanism

This allows us to easily add new GUI
elements (like the wizard for creating
progress measures)

This allows us to specify new points where
the application can be extended

Eclipse’s Plug-in System:
Plug-ins

Plug-ins: a program unit that provides a
bounded functionality (e.g., the sweep-line
method)

Dependencies: a plug-in may (acyclically)
depend on one or more other plug-ins
(e.g., the sweep-line method depends on
the generic state-space tool in ASAP)

Eclipse’s Plug-in System:
Extensions

A plug-in may define zero or more extension
points (e.g., new entries to add to the right-
click menu in the index)

An extension point can define any number of
details (like the class implementing the wizard
or when the menu entry should be enabled)

An extension point provides an
implementation of an extension point

Plug-ins in ASAP
ASAP uses mostly standard or slightly
specialized standard components

These thus get a lot of extensibility
automatically

E.g., adding an entry to the right-click
menu of the queries folder for creating a
progress measure

Interfaces
In order to make this possible we need to
adhere to the principle

A plug-in defining an extension point
describes which values are allowed,
including which interfaces they must
implement

The plug-in only has access to
implementations via the interface

Program to the interface, not the implementation

State-space Tool of
ASAP

SML/NJ

Model-independent
code

Model-dependent
generated code Model

interface

CPN implementation of
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties
(bounds, TI fairness, …)

Methods

Adding New Methods
The state space engine of ASAP also
introduces strict interfaces

Model, Storage, WaitingSet, Exploration
(actually several explorations)

Adding a new method should depend on
these interfaces and implement interfaces (or
define new interfaces and implement them)

Interfaces in SML

SML uses signatures for interfaces

Modules implementing interfaces are called
structures or functors

Functors can explicitly depend on other
structures and should be preferred over
structures

Example:
Sweep-line Exploration

Sweep-line Exploration
Functor

Sweep-line Exploration
Functor We require:

a boolean

Sweep-line Exploration
Functor We require:

a boolean
a storage

Sweep-line Exploration
Functor We require:

a boolean
a storage
a model

Sweep-line Exploration
Functor We require:

a boolean
a storage
a model

a progress measure

Sweep-line Exploration
Functor We require:

a boolean
a storage
a model

a progress measure

We provide:
a sweep-line
exploration

Sweep-line Exploration
Interfaces

The “PROGRESS_MEASSURE” signature is
defined by the sweep-line plug-in (and only
applicable for the sweep-line method)

The “SWEEP_LINE_EXPLORATION”
signature is defined by the sweep-line plug-
in, but extends the “TRACE_EXPLORATION”
provided by ASAP

Sweep-line Exploration
Interfaces

The “PROGRESS_MEASSURE” signature is
defined by the sweep-line plug-in (and only
applicable for the sweep-line method)

The “SWEEP_LINE_EXPLORATION”
signature is defined by the sweep-line plug-
in, but extends the “TRACE_EXPLORATION”
provided by ASAP

Or, reiterating an earlier point: The sweep-line method depends on previously defined interfaces and implements one of these interfaces

Extending JoSEL

When we have developed a new method,
we wish to integrate it into the GUI of ASAP

JoSEL can be extended by adding new
tasks (ASAP defines an extension point for
this)

We basically need to create a task for each
functor we create

EMF makes all the boiler-plate code for us,
and ASAP contains abstract classes that do
most of the work

Example:
Sweep-line Exploration

Example:
Sweep-line Exploration

Example:
Sweep-line Exploration

Tasks

Tasks

Tasks

Tasks

Tasks

Tasks

Tasks

Reporting in ASAP
ASAP automatically gathers information
about every execution in a database (either
an in-memory database or MySQL)

The standard report is created using a
standard report generating tool (BIRT)

ASAP is able to automatically assemble a
report based on report fragments

Adding New Entries
to the Report

Add a new value entry to the database

Make sure the value is gathered during
execution

(Make a new report item model and report
item presentation)

Make a fragment showing your value

Example:
Progress Measure

ACCESS/CPN

We have isolated the library used by ASAP
to load CPN models as well as the interface
used by the state space engine

These two parts together are distributed
under the name ACCESS/CPN

ACCESS/CPN

SML/NJ

Model-independent
code

Model-dependent
generated code Model

interface

CPN implementation of
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties
(bounds, TI fairness, …)

ACCESS/CPN

SML/NJ

Model-independent
code

Model-dependent
generated code Model

interface

CPN implementation of
model interface

W
ai

tin
g

se
ts

St
or

ag
es

Q
ue

ry
la

ng
ua

ge
s

…

Explorations

CheckersCPN-specific properties
(bounds, TI fairness, …)

ACCCESS/CPN

ACCESS/CPN

SML/NJ

Model-independent
code

Model-dependent
generated code Model

interface

CPN implementation of
model interface

ACCCESS/CPN

ACCESS/CPN Features

With Access/CPN you can:

Load models from CPN Tools

Simulate models programmatically (both
automatic and “manual”)

Inspect and change state

Evaluate SML code

Build a state space tool :-)

Access/CPN Uses

ASAP

Integration into ProM (R. Mans & M. Netjes)

Cosimulation of SystemC and CP-nets

Various master’s theses

…

Benchmarking

Benchmarking comes in (at least) 3 variants

Improve code during development

Compare methods

Improve models

We will focus on the two former

Measurements

We can measure three things

Time spent in a function

Times a function is called

Amount of memory used

Comparing Methods

We basically want to know

How long did it take to run the entire
exploration

How much memory did we use

Improving
Implementation

We want to know

What are the hot-spots (time and
memory)

How does one implementation compare
to another

This also encompasses our requirements
for comparing methods

SML/NJ Profiler

Basically non-existing

There is an infrastructure allowing us to
instrument code

Makes it difficult to control granularity

Custom Structure

Based on SML/NJ’s own internal compilation
framework

Includes a hook in the compiler we have
made ourselves

Time
Profiling
Keep track of counts
(stat)

Measure total time for a
single function
execution (phase)

Strategy

Stats

Stats

Create new stat

Stats

Create new stat

Increment a stat

Stats

Create new stat

Increment a stat

Get value of stat

Stats

Create new stat

Increment a stat

Get value of stat

Reset stat

Stats

Create new stat

Increment a stat

Get value of stat

Reset stat

Create stat as a
substat of another

Example:
Profiled Storage

Example:
Profiled Storage

Example:
Profiled Storage

Storage

ContainsAdd Tag

addList set get

Phases

Phases

Create a new phase

Phases

Create a new phase Get name,
timings, and
reset a phase

Phases

Create a new phase Get name,
timings, and
reset a phase

Given a function, create
a new function which

starts the timer for phase
on invocation and stops

on termination

Phases

Create a new phase Get name,
timings, and
reset a phase

Given a function, create
a new function which

starts the timer for phase
on invocation and stops

on termination

Start phase and
increment stat

Example:
Profiled Storage

Memory Profiling

Difficult as SML is functional

Strategy: Sample memory “once in a while”

We need to perform a full garbage
collection, as everything is allocated on the
heap ⇒ we cannot do this too often

Two Methodologies

Register a signal handler doing everything

Completely transparent to programmer

Use same strategy as for time (wrap base
structures)

Greater control
We prefer the latter approach
1) for consistency and
2) for performance reasons

Collecting Results
We simply connect the “Profile data” output
port to the standard report

Results automatically appear in the
“Statistics” section with same control as for
the rest of the gathered information

Using the “Disable profiling” port, we can
set up tasks for user control

Evaluation

Quick-and-dirty solution that works

Easy to extend – but requires a bit of
manual work

Provides a nice high-level view

Needs work to provide low-level view

Short-term
New Features

Even faster analysis
Support for timed CPN models
Standard report
On-line drawing of graph

Even Faster Analysis
CPN Tools and ASAP currently uses SML/NJ
In the labs we have ported parts of the
simulator to SML compiler, MLton
MLton can cut runtime down to 50% - 70%
MLton does not allow dynamic code
generation and you must ask all questions
in advance

We seek a reasonable way to use SML/NJ
in the initial phases (interactive
investigation) and MLton for hardcore
number crunching in later phases

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

When doing state space
analysis, we need to investigate
all bindings, so we do not care

about a fair order

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

Most likely it is possible to
just use the one of the

state space tool when not
doing simulation

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

Even Faster Analysis

MLton provides a much better profiler than
SML/NJ, leading to new insights

We use 30% - 50% of the time
generating random numbers to choose
bindings fairly

After eliminating the above, we use 20%
- 30% of the time converting between
multi-set representations

Using all of this information

has allowed us to speed the

tool up by a factor 6-8

(compared to the speed we

have seen today)

Support for
Timed Models

We need to add time information to the
state descriptor (easy)
We need to make all the utility functions
understand the time value (hash-functions,
serializations, etc.)
(easy but mind numbingly dull)
We need to implement time equivalence
(easy)

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0@0+++
1`1@0+++
1`2@0+++
1`3@0+++
1`4@0

5
1`0@0+++
1`1@0+++
1`2@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite
untimed behavior
can have infinite
timed state spaces
Time equivalence
does not record
absolute time
stamps, only the
difference between
the current time and
the time stamp

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

4

1`0@0+++
1`1@0+++
1`3@0+++
1`4@0

1
1`(2,2)@0

41`0@0+++
1`1@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite
untimed behavior
can have infinite
timed state spaces
Time equivalence
does not record
absolute time
stamps, only the
difference between
the current time and
the time stamp

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

3

1`0@0+++
1`1@0+++
1`4@0

11`2@0

41`0@0+++
1`1@0+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite
untimed behavior
can have infinite
timed state spaces
Time equivalence
does not record
absolute time
stamps, only the
difference between
the current time and
the time stamp

p

1`p++1`((p + 1) mod n)

p

c

p

(p, old)

(p, c)
c

p

Done

@+3

Take
Second

[p = c orelse
 (p +1) mod n = c,
 c <> old]

Take
First

[p = c orelse
 (p +1) mod n = c]

Chopsticks

CHOP

Eating

PHIL

Has One

PHILxCHOP

Waiting

PHIL

5

1`0@0+++
1`1@0+++
1`2@3+++
1`3@3+++
1`4@0

5
1`0@0+++
1`1@0+++
1`2@3+++
1`3@0+++
1`4@0

Support for
Timed Models

Models with finite
untimed behavior
can have infinite
timed state spaces
Time equivalence
does not record
absolute time
stamps, only the
difference between
the current time and
the time stamp

Standard Report

Most of the engine is there (exploration,
SCC graphs, extensible reporting engine)

The properties need to be generated from
the model, and code needs to be written
for this

On-line
Drawing of Graphs

Now, graphs are drawn all at once

Normally, we’ll just want to explore parts of
the graph interactively (like in CPN Tools)

On-line
Drawing of Graphs

ASAP keeps a real representation of the
graph fragments it draws in memory
(instead of just state numbers)

If we only require to be able to draw out-
going nodes, we do not even have to
precompute the entire graph

On-line
Drawing of Graphs

0

On-line
Drawing of Graphs

0

On-line
Drawing of Graphs

0

Display
successors

Display
predecessors

On-line
Drawing of Graphs

0

Display
successors

Display
predecessors

Display
successors

On-line
Drawing of Graphs

0 A representation of
state 0 is sent to state
space engine, which

calculates and returns
the successors

On-line
Drawing of Graphs

0

1

2

On-line
Drawing of Graphs

0

1

2

On-line
Drawing of Graphs

0

1

2

Display
successors

Display
predecessors

On-line
Drawing of Graphs

0

1

2

Display
successors

Display
predecessors

Display
successors

On-line
Drawing of Graphs

0

1

2 A representation of
state 1 is sent to state
space engine, which

calculates and returns
the successors

On-line
Drawing of Graphs

0

1

2

3

Longer-term
New Features

Off-line CTL analysis

Distributed (safety) checking

Extend JoSEL (syntactical sugar, language
extensions)

Integrate CPN viewer

More user friendly ways to specify properties

Get It!

ASAP can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/asap.html

Access/CPN can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

Get It!

ASAP can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/asap.html

Access/CPN can be downloaded from
www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

Thanks for you attention!

http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/asap.html
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn
http://www.cs.au.dk/CPnets/projects/ascoveco/accesscpn

