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Overview

n A project on routing in mobile ad-hoc networks

n Modules in coloured Petri nets

n Routing Interoperability Protocol



A project on 
routing in mobile 
ad-hoc networks 



The Project
n Participants: Ericsson Denmark A/S, Telebit and CPN 

Group at University of Aarhus

n Project duration: July 2003-December 2005

n Project web-page: http://www.daimi.au.dk/CPnets/IPv6/

n Executive summary summary: This project deals with the 
design and validation of routing protocols and other protocols in 
ad-hoc and mobile networks

n The goal was to explore the use of IPv6 in the context of 
ad-hoc networks using CP-nets

http://www.daimi.au.dk/CPnets/IPv6/
http://www.daimi.au.dk/CPnets/IPv6/


Wireless Communication

Key characteristics:

n Communication is based on pre-existing (fixed) 
infrastructure

n No direct communication between mobile nodes

Base station

GSM network

Base station

Internet

W-LAN (e.g. 802.11a/b/g) Cellular networks



Mobile Ad-hoc Networks

Application areas
n Sensor networks
n Search-and-rescue operations
n Home networking
n Traffic Safety

Challenges
n Mobility and bandwidth
n Power consumption
n Security
n Fully distributed operation

A

B

C

No pre-existing 
infrastructure and multi-
hop communication



Hybrid Network 
Architecture

A main topic of the project was protocols for integration 
of fixed core networks and mobile ad-hoc networks

core network

(Internet)
MANET



Sub-projects

1) Specification of mobility and communication 
scenarios in an Internet-MANET network 
architecture

2) Specification of an Edge Router Discovery 
Protocol for mobile ad-hoc networks

3) Model-based prototyping of protocols for Internet-
MANET routing with redundant gateways



Modules in 
coloured Petri nets



Sub-project 3

n 54 places

n 40 transitions

n = big!

n = incomprehensible?

n No, because we use modules
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A CPN Model
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A Simpler CPN model
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Main Module
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Network Architecture

Ad-hoc 
network

Possible solutions
➡ Mobile IP
➡ Mobile host routes injected by gateways into the core 

network
➡ Dynamic DNS and renumbering

Core network

A B C

Gateways



Model-based Prototyping

Figure 2 shows the approach taken 
to use CPN models to develop a 
prototype of the interoperability 
protocol. A CPN model (lower left of 
Fig. 2) has been developed by 
modelling the natural language 
protocol specification [22] (lower 
right) of the interoperability protocol. 
The modelling activity transforms the 
natural language specification into a 
formal executable specification 
represented by the CPN model. The 
CPN model captures the network 
architecture depicted in Fig. 1 and 
the protocol mechanisms of the 
interoperability protocol, e.g., the 
periodic transmission of 
advertisements, the dynamic updates 
of the DNS database, and traffic 
flows between hosts in the core 
network and nodes in the ad-hoc 
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Model-based Prototyping

Figure 2 shows the approach taken 
to use CPN models to develop a 
prototype of the interoperability 
protocol. A CPN model (lower left of 
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Scenario



Router Advertisements



Sending Data



Mobility & DNS Update



Basic Operation
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Ad-hoc Node
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Advantages of
Model-based Prototypes

n Easier to control and reproduce scenarios

n Implementation details can be abstracted away

n Setup of physical network equipment is not 
required

n Larger scenarios can be investigated



Advantages of Integration 
of CP-nets with Animation

n Behaviour is as defined by the formal model

n Knowledge of the formal modelling language is not 
required

n Presentation for military leaders is possible

n Validation that the implemented prototype 
corresponds to the specification


