
Routing Protocols
in Mobile Ad-hoc

Networks
Michael Westergaard

mw@daimi.au.dk
Department of Computer Science
University of Aarhus, Denmark

mailto:mw@daimi.au.dk
mailto:mw@daimi.au.dk

Overview

n A project on routing in mobile ad-hoc networks

n Modules in coloured Petri nets

n Routing Interoperability Protocol

A project on
routing in mobile
ad-hoc networks

The Project
n Participants: Ericsson Denmark A/S, Telebit and CPN

Group at University of Aarhus

n Project duration: July 2003-December 2005

n Project web-page: http://www.daimi.au.dk/CPnets/IPv6/

n Executive summary summary: This project deals with the
design and validation of routing protocols and other protocols in
ad-hoc and mobile networks

n The goal was to explore the use of IPv6 in the context of
ad-hoc networks using CP-nets

http://www.daimi.au.dk/CPnets/IPv6/
http://www.daimi.au.dk/CPnets/IPv6/

Wireless Communication

Key characteristics:

n Communication is based on pre-existing (fixed)
infrastructure

n No direct communication between mobile nodes

Base station

GSM network

Base station

Internet

W-LAN (e.g. 802.11a/b/g) Cellular networks

Mobile Ad-hoc Networks

Application areas
n Sensor networks
n Search-and-rescue operations
n Home networking
n Traffic Safety

Challenges
n Mobility and bandwidth
n Power consumption
n Security
n Fully distributed operation

A

B

C

No pre-existing
infrastructure and multi-
hop communication

Hybrid Network
Architecture

A main topic of the project was protocols for integration
of fixed core networks and mobile ad-hoc networks

core network

(Internet)
MANET

Sub-projects

1) Specification of mobility and communication
scenarios in an Internet-MANET network
architecture

2) Specification of an Edge Router Discovery
Protocol for mobile ad-hoc networks

3) Model-based prototyping of protocols for Internet-
MANET routing with redundant gateways

Modules in
coloured Petri nets

Sub-project 3

n 54 places

n 40 transitions

n = big!

n = incomprehensible?

n No, because we use modules

Gateway2

Gateway

Gateway1

Gateway

AdHoc
Network

AdHocNetwork

Core
Network

CoreNetwork

Config2
GWConfig

Config1
GWConfig

AdHoc
Network

CmdxPacket

Core
Network

CmdxPacket
CoreNetwork AdHocNetwork

Gateway

Gateway

1
1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

2

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

A CPN Model

str

nn

n k

n if success
then 1`n
else empty

if n=k
then k+1
else k

k

n

if n=k
then k+1
else k

if n=k
then str^d
else str

(n,d)

(n,d)
if success
then 1`(n,d)
else empty(n,d)(n,d)

Transmit
Ack

Receive
Ack

Receive
Packet

Transmit
Packet

Send
Packet

C

INT

B

INTxDATA

NextRec
1

INT

Received
""

DATA

A

INTxDATA

D

INT

NextSend

1

INT

Send

INTxDATA

1`(1,"Modellin")++
1`(2,"g and An")++
1`(3,"alysis b")++
1`(4,"y Means ")++
1`(5,"of CPN ")++
1`(6,"red Petr")++
1`(7,"i Nets##")

A Simpler CPN model

(n,d)

n

n k

nn

(n,d)

Receive
Ack

Send
Packet A

Out
INTxDATA

D
In
INT

NextSend

1

INT

Send

1`(1,"Modellin")++
1`(2,"g and An")++
1`(3,"alysis b")++
1`(4,"y Means ")++
1`(5,"of CPN ")++
1`(6,"red Petr")++
1`(7,"i Nets##")

INTxDATA

In

Out

(n,d)

if n=k
then k+1
else k

k

if n=k
then str^d
else str

if n=k
then k+1
else k

str

Receive
Packet

B
In

INTxDATA

C
Out

INT

Received
""

DATA

NextRec
1

INT

Out

In

if success
then 1`n
else empty

n

if success
then 1`(n,d)
else empty(n,d)

Receiver

Receiver

Sender

Sender

Transmit
Ack

Transmit
Packet

C

INT

B

INTxDATA

A

INTxDATA

D

INT

Sender Receiver

Sender

Main

Receiver

Main Module

if success
then 1`n
else empty

n

if success
then 1`(n,d)
else empty(n,d)

Receiver

Receiver

Sender

Sender

Transmit
Ack

Transmit
Packet

C

INT

B

INTxDATA

A

INTxDATA

D

INT

Sender Receiver

Routing
Interoperability

Protocol

Network Architecture

Ad-hoc
network

Possible solutions
➡ Mobile IP
➡ Mobile host routes injected by gateways into the core

network
➡ Dynamic DNS and renumbering

Core network

A B C

Gateways

Model-based Prototyping

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Domain expert

Gateway2

Gateway

Gateway1

Gateway

AdHoc
Network

AdHocNetwork

Core
Network

CoreNetwork

Config2

Config1

AdHoc
NetworkCore

Network

1
1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

4

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
3`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

Formal model

Validate

Modeling

FM expert

Model-based Prototyping

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Animation
Domain expert

Explore and interact

Gateway2

Gateway

Gateway1

Gateway

AdHoc
Network

AdHocNetwork

Core
Network

CoreNetwork

Config2

Config1

AdHoc
NetworkCore

Network

1
1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

4

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
3`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

Formal model

Modeling

FM expert

Scenario

Router Advertisements

Sending Data

Mobility & DNS Update

Basic Operation

Model

Gateway2

Gateway

Gateway1

Gateway

AdHoc
Network

AdHocNetwork

Core
Network

CoreNetwork

Config2
GWConfig

Config1
GWConfig

AdHoc
Network

CmdxPacket

Core
Network

CmdxPacket
CoreNetwork AdHocNetwork

Gateway

Gateway

1
1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

2

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

Gateway

(ipadr1,ipadr,prefix)

(ipadr1,ipadr,prefix)

(RECEIVE ipadr1,packet) (GWAHNROUTING ipadr,packet)

(ROUTING,packet) (RECEIVE ipadr,packet)

CORE_AHN
Transmit

AHN_CORE
Transmit

Gateway
Advertisement
GWAdvertise

AdHoc
Network

I/O

CmdxPacket

Core
Network

I/O

Config
I/OGWConfig

I/O

GWAdvertise
I/O

I/O

CmdxPacket

2

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

1
1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

Ad-hoc Node

AdvReceive

AdvReceive

PacketReceive

PacketReceive

DeleteGW

DeleteGW

AdHoc
Network

I/O

CmdxPacket

Routing
Information

I/O

DistanceInformation

Nodes
I/O

AHNConfig

I/O

I/O

I/O

DeleteGWPacketReceive AdvReceive

2

1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

1

3

1`(AHN(3),[("3ffe:100:3:405::3","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(5),[("3ffe:100:3:406::5","3ffe
:100:3:406::1","3ffe:100:3:406::"),("
3ffe:100:3:405::5","3ffe:100:3:405::
1","3ffe:100:3:405::")])

Mobility

GWs

IPAdr

1`"3ffe:100:3:405::1" ++
1`"3ffe:100:3:406::1"

Routing
Information

I/OI/O

Nodes
I/O AHNConfigI/O

Increase Decreasedgwipadr dgwipadr

rdistinfo

rdistinfo

Decrease (AHN(i),ahnipconfigs,dgwipadr,rdistinfo)

Increase (AHN(i),ahnipconfigs,dgwipadr,rdistinfo)

DistanceInformation

(AHN(i),ahnipconfigs)

(AHN(i),ahnipconfigs)

2

1`"3ffe:100:3:405::1"++
1`"3ffe:100:3:406::1"

1

1`[(AHN(3),"3ffe:100:3:405::3","3ffe:
100:3:405::1",REACH(3)),(AHN(3),"","
3ffe:100:3:406::1",REACH(5)),(AHN(4
),"3ffe:100:3:405::4","3ffe:100:3:405
::1",REACH(4)),(AHN(4),"","3ffe:100:3
:406::1",REACH(4)),(AHN(5),"3ffe:100
:3:405::5","3ffe:100:3:405::1",REAC
H(5)),(AHN(5),"3ffe:100:3:406::5","3ff
e:100:3:406::1",REACH(3))]

3

1`(AHN(3),[("3ffe:100:3:405::3","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(5),[("3ffe:100:3:406::5","3ffe
:100:3:406::1","3ffe:100:3:406::"),("
3ffe:100:3:405::5","3ffe:100:3:405::
1","3ffe:100:3:405::")])

DNS Server

ipadripadr

(symname,newipadr)

(symname,resipadr)

(symname,resipadr)
DNSUpdateDNSRequest

DNSAdr

IPAdr

DNS
Database

SymNamexIPAdr

Core
Network

I/O CmdxPacket
(ROUTING,
 {src = ipadr,
 dest = srcipadr,
 cont = DNS_REP (symname,resipadr)})

(RECEIVE ipadr,
 {src = newipadr,
 dest = ipadr,
 cont = DNS_UPD (symname,newipadr)})

I/O

(RECEIVE ipadr,
 {src = srcipadr,
 dest = ipadr,
 cont = DNS_REQ symname})

1 1`"3ffe:100:3:401::1"

3

1`("AHN(3)","3ffe:100:3:405::3")++
1`("AHN(4)","3ffe:100:3:405::4")++
1`("AHN(5)","3ffe:100:3:406::5")

1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

Advantages of
Model-based Prototypes

n Easier to control and reproduce scenarios

n Implementation details can be abstracted away

n Setup of physical network equipment is not
required

n Larger scenarios can be investigated

Advantages of Integration
of CP-nets with Animation

n Behaviour is as defined by the formal model

n Knowledge of the formal modelling language is not
required

n Presentation for military leaders is possible

n Validation that the implemented prototype
corresponds to the specification

