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Example (1/4) 5@
=

@ 2 runners in a race, halfway through the
race is a stand with water

@ Either
@ run: a runner runs to the drink stand,
@ win: a runner wins the race, or

@ lose: a runner loses the race



Example (2/4) 5@;
[

@ Only one runner can win the race

@ In the beginning neither of the runners have
finished any laps

@ We can model this using Timed Automata or
Coloured Peftri nets
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Motivation

We want the model to

@ look good (even to people not familiar with
the modeling formalism)

@ behave well (e.g. ensure only one runner can
win the race)



QOutline

® The BRITNeY animation tool
@ A state space tool

@ Memory-efficient state storage using the
sweep-line method

@ Memory-efficient state storage using hash
compaction and backtracking



Looking Good

The BRITNeY animation tool
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Motivation

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc
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More Information about
BRITNeY animation

@ Tool web-page: http://wiki.daimi.au.dk/tincpn

@ Screen-cast from CPN Workshop 2005 tutorial:
http://www.daimi.au.dk/~mw/local /demo/
BRITNeY animation/

@ Case study: L.M. Kristensen, M. Westergaard,
and P.C. Ngrgaard: Model-based Prototyping of
an Interoperability Protocol forMobile Ad-hoc
Networks, IFM 2005


http://wiki.daimi.au.dk/tincpn
http://wiki.daimi.au.dk/tincpn
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/

Behaving Well

A state space tool
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State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

@ E.g., can more than one runner win?
@ Analysis of CP-nets is impossible

@ How do we do it anyway? Try all possible
states

@ Loops? Build reachability graph
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Simple Algorithm for
State Space Analysis

Queue.add(Simulator.get_initial state())
while !Queue.is_empty() do

s := Queue.remove_ first()
Storage.add(s)
process(s)

forall s’ in Simulator.get_next(s) do

if !Storage.contains(s’) then
Queue.add(s’)

endif
endfor
endwhile



Parameftrizing the
Algorithm

@ The algorithm relies on 3 data-structures:
@ Simulator (get_initial_state, get_next)
® Queue (add, is_empty, remove_first)

@ Storage (add, contains)

@ By providing different implementations, we can control
which formalism to use (Simulator), how to traverse
the state space (Queue - waiting/unprocessed), and
how to store data efficiently (Storage - passed/
processed)
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Problems with
State Space Analysis

@ Problem: The reachability graph is large, often even
infinite

@ Solution 1: Store only some of the graph
@ Solution 2: Store each node more efficiently

@ A lot of so-called reduction methods exist and new
reduction methods are found out every day



A Condensed
Representation (1/2)

We want to represent the entire state space

A state of the system is (rl,r2,flag) with
rl,r2ess,d,w,l; and flageju,ds

Only some (10) of the syntactically possible
states (4:4-2=32) are reachable

At least ceil(log(32))=5 bits are used to store
each state, although ceil(log(10))=4 bits would
suffice



A Condensed
Representation (2/2)

@ In realistic examples, the number of
syntactically possible states is much larger
than the number of reachable states, so
distinguishing only between reachable states
yields a good reduction

@ Alas, we first know the number of
reachable states, when we have constructed
the reachability graph
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Representation
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enumerate all :
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I: run 2

2. win 1

3: win 2
4: lose 1

5: lose 2
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Evaluation of the
Algorithm

@ We only store a few (6) actual states
@ The condensed representation uses
4+|Rl-w + |El-(logITl + loglRI) + IFl-loglS| bits
@ R: all reachable states
® wW: Size of machine word
@ E: all reachable arcs
@ T: all transitions
@ S: all syntactically possible states
@ F: states on the front
@ Efficient standard representation
IRI-(3-w + log|SI) + IEl-loglS]



More Information about
the Algorithm

@ T. Mailund, M. Westergaard: Obtaining
Memory-Efficient Reachability Graph

Representations Using the Sweep-Line
Method, TACAS 2004
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Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

@ Idea of hash compaction: Store hash value for
each state only

@ Hash collision?
@ Hash compaction fails

® We will store for each state a predecessor
and trace from the initial state
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Evaluation of the
Algorithm

@ The algorithm uses
RI‘(Ww + (2'w + h)) + 2:|R[:(h + logITI) =
IRI-(3:(w + h) + logITl) <= 7-w:|R|
@ R: reachable states
® w: Size of machine word
@ h: size of hash-value
@ T: transitions
@ Experiments show that 16-w:|R| is used
@ log|T| = 3-w
@ In SML-NJ everything is a reference



More Information about
the Algorithm

@ L. Arge, G.S. Brodal, S. Christensen, L.M.
Kristensen, and M. Westergaard: The
ComBack State Space Exploration Method:
Combining Hash Compaction with
Backtracking, not yet submitted



Conclusion

@ BRITNeY animation: formalism-independent
tool for making formal models look good

@ State space tool: formalism-independent
platform for experimenting with mulfiple
reduction methods of state spaces



