Looking good,

behaving well

Michael Westergaard
Department of Computer Science
University of Aarhus

Example (1/4) 5@
=

@ 2 runners in a race, halfway through the
race is a stand with water

@ Either
@ run: a runner runs to the drink stand,
@ win: a runner wins the race, or

@ lose: a runner loses the race

Example (2/4) 5@;
[

@ Only one runner can win the race

@ In the beginning neither of the runners have
finished any laps

@ We can model this using Timed Automata or
Coloured Peftri nets

Example (3/4) 5@;
(352

(7

-
©

Example (3/4) 5@;
(352

(7

&

S

-
©

Example (3/4) 5@;
(352

(7
o~
o

Example (3/4) 5@;
(352

(7
-

@c.»
©

Example (3/4) 5@;
(352

(7
-

Example (4/4) 5@;
Frz

Motivation

We want the model to

@ look good (even to people not familiar with
the modeling formalism)

@ behave well (e.g. ensure only one runner can
win the race)

QOutline

® The BRITNeY animation tool
@ A state space tool

@ Memory-efficient state storage using the
sweep-line method

@ Memory-efficient state storage using hash
compaction and backtracking

Looking Good

The BRITNeY animation tool

iy
A
i e W e Pl
= i i ¥ Y
x iy o J
] =

o, g o P

T N

-,

Motivation

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Motivation

Domain expert

Figure 2 shows the approach taken
F M ex e r to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Motivation

Domain expert

Figure 2 shows the approach taken
F M ex e r to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
i modelling the natural language
protocol specification [22] (lower
M O d e l I n right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
5 , : . - : formal executable specification
RS i i S 'J represented by the CPN model. The
~—— ——r——— - CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic

flows between hosts in the core
network and nodes in the ad-hoc

Specification

Motivation

Domain expert

Figure 2 shows the approach taken
F M ex e r to use CPN models to develop a

prototype of the interoperability

protocol. A CPN model (lower left of

Fig. 2) has been developed by
modelling the natural language

1' (RECEIVE("AHN(4)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","
ffe:100:3:405::"))})++

1°("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

[}
9@ " (FLOODING("3ffe: 100:3:405::1"),{ protocol specification [22] (lower
1" (ROUTING, {src="3ffe:100:3:401::2 o 3“‘?:1°°:3;?3;;;”,1%%;‘.’.3’;;;.% O e I n g right) of the interoperability protocol.
: 3 y The modelling activity transforms the
natural language specification into a

", dest="3ffe:100:3:401::1",cont=DNS

REQ("AHN(3)")})
Gatewayl
®

Core Core
Network Network

00:3:401::1","3ffe:100:3:405::"))})

formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the

Gateway2 AdHocNetwork interoperability protocol, e.g., the
Gatewa periodic transmission of
advertisements, the dynamic updates

- of the DNS database, and traffic
1°("3ffe:100:3:401::4","3ffe:100:3:4 ?
. © 6@ flows between hosts in the core

network and nodes in the ad-hoc

Network Network

CoreNetwork

06::1","3ffe:100:3:406::")

Formal model

Specification

1°("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS
REQ("AHN(3)")})
B
Core Core
Network Network

CoreNetwork

1 ("3ffe:100:3:401::4","3ffe: 100:3:4 6@

06::1","3ffe:100:3:406::")

Formal model

Gateway2

Motivation

1° (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","

ffe:100:3:405::"))})++

' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no

i ,cont=GW_ADV/(("3ffe:1

00:3:401::1","3ffe:100:3:405::"))})

Network Network

AdHocNetwork

Modeling

-

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Motivation

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the

Gateway2 AdHocNetwork inte_rop_erability prqtocol, e.g., the
Gatewa periodic transmission of
advertisements, the dynamic updates

~("3ffe:100:3:401::4" "3ffe:100:3: of the DNS database, and traffic
1 ("3ffe:100:3:401::4","3ffe:100:3:4 6@ flows between hosts in the core

network and nodes in the ad-hoc

1 (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","
ffe:100:3:405::"))})++
Q@ ' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
i ,cont=GW_ADV/(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

1°("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS

REQ("AHN(3)")})
Gatewayl
®

Core Core
Network Network

Network Network

CoreNetwork

06::1","3ffe:100:3:406::")

Formal model

Specification

1°("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS
REQ("AHN(3)")})
B
Core Core
Network Network

CoreNetwork

1 ("3ffe:100:3:401::4","3ffe: 100:3:4 6@

06::1","3ffe:100:3:406::")

Formal model

Gateway2

Motivation

1° (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","

ffe:100:3:405::"))})++

' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no

i ,cont=GW_ADV/(("3ffe:1

00:3:401::1","3ffe:100:3:405::"))})

Network Network

AdHocNetwork

Modeling

-

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

1°("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS
REQ("AHN(3)")})
B
Core Core
Network Network

CoreNetwork

1 ("3ffe:100:3:401::4","3ffe: 100:3:4 6@

06::1","3ffe:100:3:406::")

Formal model

Gateway2

Methodology o

1° (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","

ffe:100:3:405::"))})++

' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no

i ,cont=GW_ADV/(("3ffe:1

00:3:401::1","3ffe:100:3:405::"))})

Network Network

AdHocNetwork

Modeling

-

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Methodology o

Domain expert

Figure 2 shows the approach taken
F M ex e r to use CPN models to develop a

prototype of the interoperability

protocol. A CPN model (lower left of

Fig. 2) has been developed by
modelling the natural language

1' (RECEIVE("AHN(4)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","
ffe:100:3:405::"))})++

1°("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

[}
9@ " (FLOODING("3ffe: 100:3:405::1"),{ protocol specification [22] (lower
1" (ROUTING, {src="3ffe:100:3:401::2 o 3“‘?:1°°:3;?3;;;”,1%%;‘.’.3’;;;.% O e I n g right) of the interoperability protocol.
: 3 y The modelling activity transforms the
natural language specification into a

", dest="3ffe:100:3:401::1",cont=DNS

REQ("AHN(3)")})
Gatewayl
®

Core Core
Network Network

00:3:401::1","3ffe:100:3:405::"))})

formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the

Gateway2 AdHocNetwork interoperability protocol, e.g., the
Gatewa periodic transmission of
advertisements, the dynamic updates

- of the DNS database, and traffic
1°("3ffe:100:3:401::4","3ffe:100:3:4 ?
. © 6@ flows between hosts in the core

network and nodes in the ad-hoc

Network Network

CoreNetwork

06::1","3ffe:100:3:406::")

Formal model

Specification

AHN(4) -> 3ffe:100:3:405::4
AHN

0 0 0 0

Fe
]

AHNgg; -> 3ffe:100:3:406::3
5

E Serve Seteny.3.a01::3
ek HO% A
N e e ol:1 3ffe'100:3:405: 1

Ad-hoc Node 3

® DNS request/reply/update
© Gateway advertisement
-> 3ffe:100:3:406::5 4 ® Data packet

|
od

Ad-hoc Node 4
3ffe:100:3:405::4
3(f)fe:%)00:3:406::4

3ffe:100:3:406::3

Gateway 2 3ffe: ;20:3:405: ;

3ffe:100:3:401::
3ffe:100:3:406::1

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS

REQ("AHN(3)")})
Gatewayl
®

Core Core
Network Network

CoreNetwork Gateway2
Gatewa

1 ("3ffe:100:3:401::4","3ffe: 100:3:4 6@

06::1","3ffe:100:3:406::")

Formal model

3
Ad-hoc Node 5 i
3ffe:100:3:406::5

\—ifies:}00t3:405 20

1° (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","
ffe:100:3:405::"))})++

' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV/(("3ffe:1
00:3:401::1","3ffe:100:3:405::"))})

AdHoc AdHoc
Network Network

AdHocNetwork

FM expert

Modeling

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

AHN(4) -> 3ffe:100:3:405::4 4 eGateway advertisement
AHN(5) -> 3ffe:100:3:406::5 4 ® Data packet

0 0 0 0

Fe
]

AHNgg; -> 3ffe:100:3:406::3 ~~ ®DNS request/reply/update
5

E Serve Seteny.3.a01::3
ek HO% A
N e e ol:1 3ffe'100:3:405: 1

|
od

Ad-hoc N
3ffe:100:

e 4
3:405::4
[| 3(f)fe:%)00:3:406::4

Ad-hoc Node 3 |
Gateway 23.100.3:405.13
W €:100:3:405::
3ffe:100:3:401::4 Ad-hoc Node 5 J
3ffe:100:3:406::1 3ffe:100:3:406::5

\—ifies:}00t3:405 20

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of

Fig. 2) has been developed by
cont=GW_ADV(("3ffe:100:3:401::1"," modelling the natural language
ffe:100:3:405::"))})++

[} o .
* (FLOODING("3ffe:100:3:405::1"),{ M Od e l l n prc;]tocc;l ipecmcatmn [52] (lower
3 src="3ffe:100:3:405::1",dest="all-no right) of the interoperability protocol.
1" (ROUTING, {src="3ffe:100:3:401::2 des multicast",cont=GW_ADV(("3ffe:1 g ght) P yp

", dest="3ffe:100:3:401::1",cont=DNS 00:3:401::1","3ffe:100:3:405::"))}) The modelling activity transforms the

REQ("AHN(3)")}) Gateway natural language specification into a
g

formal executable specification
represented by the CPN model. The
Core Core
Network Network

1' (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"

AdHoc AdHoc

CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the

TN eI Gateway2 AdHocNetwork inte_rop_erability prqtocol, e.g., the
Gatewa periodic transmission of

advertisements, the dynamic updates
S ("3ffe:100:3:401 4" "3ffe:100:3: of the DNS database, and traffic
1 ("3ffe:100:3:401::4","3ffe:100:3:4 6@ flows between hosts in the core

network and nodes in the ad-hoc

Network Network

06::1","3ffe:100:3:406::")

Formal model

Specification

AHN > 3ffe:100:3:405::4 - © Gateway advertisement

AHNgg; > 3ffe:100:3:406::3 f ® DNS request/reply/update
AHN(5) -> 3ffe:100:3:406: 5 ® Data packet

0 0 0
[-‘ “
Gatewag

3ffe:100:3:401::
?I?fl\f‘(se 51%5"?401::1 3ffe:100:3:405:

Ad-hoc Node 4
3ffe:100:3:405: 4
[| 3(f)fe %)00 :3:406::4

Ad-hoc Node 3 |
3ffe:100:3:406: 3
Gatewa 23ffe 100 3:405::

3ffe 100 3:401::2 3ffe:100:3:401: Ad hoc N%d 5
3:

]
:406::
405::

3ffe:100: 3 406:: 1 3ffe:100:
_-/

3ffe 100

1 (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
cont=GW_ADV(("3ffe:100:3:401::1","
ffe:100:3:405::"))})++

' (FLOODING("3ffe:100:3:405::1"),{
src="3ffe:100:3:405::1",dest="all-no
des multicast",cont=GW_ADV(("3ffe:1
00:3:401::1" "3ffe 100:3:405::"))})

1 ("3ffe 100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

1' (ROUTING,{src="3ffe:100:3:401::2
", dest="3ffe:100:3:401::1",cont=DNS

REQ("AHN(3)")})
Gatewayl
®

Core Core
Network Network

CoreNetwork Gateway2
Gatewa

1 ("3ffe:100:3:401::4","3ffe: 100:3:4 6@

AdHoc AdHoc
Network Network

AdHocNetwork

06::1","3ffe:100:3:406::")

Formal model

Methodology o

Domain expert

Figure 2 shows the approach taken
to use CPN models to develop a
prototype of the interoperability
protocol. A CPN model (lower left of
Fig. 2) has been developed by
modelling the natural language
protocol specification [22] (lower
right) of the interoperability protocol.
The modelling activity transforms the
natural language specification into a
formal executable specification
represented by the CPN model. The
CPN model captures the network
architecture depicted in Fig. 1 and
the protocol mechanisms of the
interoperability protocol, e.g., the
periodic transmission of
advertisements, the dynamic updates
of the DNS database, and traffic
flows between hosts in the core
network and nodes in the ad-hoc

Specification

Good-looking Runners
Executive Edition

" CPN Tools (Version 1.4.0 - May 2005) =l Ed

wTool box
= Help
e Options

B Power... | a1 SCub v I ED R T % G 42sem

Good-looking Runners
Engineer Edition

LFH

CPH Tools (Version 1.4.0 - May 20{(5)

BEX

¥Tool box
= ALxiliary
e Creata
= Hizrarchy
e et
= Simulation
e S5tate space
B Styla
e

= Help

e Options

¥simple.cpn Binder 0
Step: 2 Mew Page

Time: 0

= History

¥ Declarations
w Color definitions
e ariable definit
» Function definiti
e structure msc
Mew Fage

Mone

Auziliary

ot ited It Inted 11 1L U

. ¢ PN Toals, ..

LIMTT

1 runnerl
1 runneri2

) ++
]

LIMIT

17 runner (1)++
1 Fnner 2) y

3

A] A Dk
il Stand

RLINMER.

I_u:ﬂ Microsafk ...

"
L e RLINMER.

output (;

action
msc.addEvent(
"Start",
"OrinkStand"”,
RUMMER.mkstr =)

sl BRITHEY ... EPN o Pragra. .

FAANINEGHTTERSLD Sy
msc. addIntm nalEvent™

“"Flag”, "up"]);

Win

H

RUMNMER.

down
down

Flag i e

Lp

FLAG
;,fﬂ‘f LIp

lose

ry

action

Input IIH
output (];

RLMNMER

msc.addEvent{
"DrinkStand”,
"Loser",
RLUMMER.mkstr)

3l o Tooks.. [

SEET T 0B DY wisem

Good-looking Runners
Performance Analyst
Edition

CFH

CPH Tools (Version 1.4.0 - May 20{(5)

BEX

¥Tool box

= Auxiliary Simulation

e Create

» Hierarchy « ' "D‘H } »‘nu
e et - e

= Simulation
e 5tate space
= Styla
= aw
= Help
e Options
¥ runner.con
Step: O
Time: 0 L
= History
¥ Declarations (%, lap)
* val laps RUNNER RUNNERxLAP

efun no_laps . (%, 0
»fun model_time INNEF{.aII[]@%—D run ’ Lap

¥ Color definitions

RLINMER.

[lap = |'||:|_Iap5|f}1]
--".-.-'-._'_._'_F._._.‘-

win

.-—'"'_'_.-

down

» colset FLAG 9 i :E%%%g+++ down
¥colset RUNNER = index rwith 1..2 timed; = ¥, la
¥colset LAP = int; (x, lap) - .‘r”"
¥ colset RUNMER%LAP = product RUNMER * L&P lose
» colset CLOCK (x, fap+ 1]@+curat||:|
Variable definitions [lap = no_laps()]
¥ Graphic definitions [lap<no_laps(i]| RunLap RUNMER
¥Gantt
e structure gantt input (lap),
+val output (duration);
¥fun show_ganttirunner, lap, time) = action
gantt.addTaskMinute(RUNMNER.mkstr runne |'I3t _) .
w Line/Histogram :.;_Ial d = discrete(20, 50];
gailes show _gantt(x, lap, d);
MNew Page d

and

M '@,r [ple=y - ¢ kin-cpn I_u:;nj Micras... .‘:3;1 Power,.. Hea SCJub PPN T, W EM

EET T 0% DY e

BRITNeY animation (1/3)

iInvokes

observes

froller Moael View.
changes alerts

BRITNeY animation (2/3)

iInvokes

observes
Controller + Model View
alerts
Formal executable model BRITNeY

animation

BRITNeY animation (3/3)

Animation
plugins
CPN
simulator
BRITNeY

/}‘%\m)fhﬁh@ih@h) animariorn

STUbS

XML-RPC XML-RPC
client server

BRITNeY anlmahon (3/3)

Animation
plugins

Formal executable model fool

BRITNeY

Animation animarion

AL

STUbS
XML-RPC XML-RPC
client server

More Information about
BRITNeY animation

@ Tool web-page: http://wiki.daimi.au.dk/tincpn

@ Screen-cast from CPN Workshop 2005 tutorial:
http://www.daimi.au.dk/~mw/local /demo/
BRITNeY animation/

@ Case study: L.M. Kristensen, M. Westergaard,
and P.C. Ngrgaard: Model-based Prototyping of
an Interoperability Protocol forMobile Ad-hoc
Networks, IFM 2005

http://wiki.daimi.au.dk/tincpn
http://wiki.daimi.au.dk/tincpn
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/
http://www.daimi.au.dk/~mw/local/demo/

Behaving Well

A state space tool

State Space Analysis

State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

@ E.g., can more than one runner win?

State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

@ E.g., can more than one runner win?

@ Analysis of CP-nets is impossible

State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

@ E.g., can more than one runner win?
@ Analysis of CP-nets is impossible

@ How do we do it anyway? Try all possible
states

State Space Analysis

@ Reachability: Does any possible state of the
system satisfy a given property?

@ E.g., can more than one runner win?
@ Analysis of CP-nets is impossible

@ How do we do it anyway? Try all possible
states

@ Loops? Build reachability graph

State Space
for Runners @

win 2 win 2 lose 2

(rl,r2,flaq) ot @ Al
rl,r2 e {s,d,w,l} run 2 Trun 2 run 2
flag € {u,d}

—

¢-0:e

run 1 @ win 1

Simple Algorithm for
State Space Analysis

Queue.add(Simulator.get_initial state())
while !Queue.is_empty() do

s := Queue.remove_ first()
Storage.add(s)
process(s)

forall s’ in Simulator.get_next(s) do

if !Storage.contains(s’) then
Queue.add(s’)

endif
endfor
endwhile

Parameftrizing the
Algorithm

@ The algorithm relies on 3 data-structures:
@ Simulator (get_initial_state, get_next)
® Queue (add, is_empty, remove_first)

@ Storage (add, contains)

@ By providing different implementations, we can control
which formalism to use (Simulator), how to traverse
the state space (Queue - waiting/unprocessed), and
how to store data efficiently (Storage - passed/
processed)

Problems with
State Space Analysis

Problems with
State Space Analysis

@ Problem: The reachability graph is large, often even
infinite

Problems with
State Space Analysis

@ Problem: The reachability graph is large, often even
infinite

@ Solution 1: Store only some of the graph

Problems with
State Space Analysis

@ Problem: The reachability graph is large, often even
infinite

@ Solution 1: Store only some of the graph

@ Solution 2: Store each node more efficiently

Problems with
State Space Analysis

@ Problem: The reachability graph is large, often even
infinite

@ Solution 1: Store only some of the graph
@ Solution 2: Store each node more efficiently

@ A lot of so-called reduction methods exist and new
reduction methods are found out every day

A Condensed
Representation (1/2)

We want to represent the entire state space

A state of the system is (rl,r2,flag) with
rl,r2ess,d,w,l; and flageju,ds

Only some (10) of the syntactically possible
states (4:4-2=32) are reachable

At least ceil(log(32))=5 bits are used to store
each state, although ceil(log(10))=4 bits would
suffice

A Condensed
Representation (2/2)

@ In realistic examples, the number of
syntactically possible states is much larger
than the number of reachable states, so
distinguishing only between reachable states
yields a good reduction

@ Alas, we first know the number of
reachable states, when we have constructed
the reachability graph

The Sweep-line (@)
Mefhod

The Sweep-line (@)
Method

Already
processed

The Sweep-line
Method

run 1 ose 1

Already
processed

(S,w,d)

Twin 2 | lose 2

r

Discovered bur
not yer
processed

(S,d,u)

run 2 run 2

run
—> 1 (S)S)t)

The Sweep-line
Method

Already
processed

Discovered bur
not yer
processed

Not yet
discovered —

The Sweep-line @
Method!

L1 1
Already s 4 W @
processed
Discovered but W'” : TW‘” e lose 2
1 real win 1
not yet &
processed
N 1_ 1_ Trun 2 run 2
of ye

rcnl win 1

discovered —> iy

O
W

ALl states we
will encounter

@'M‘mlh@ “H}\)(J/ I Qg)i} @{F
rhe QIXJQH@W@J‘?@T are

i B

located in front of
DI

not s (S,.a,u)
processed

i B

The S)\VAV/@@U@«'JUW@

run 2

Not yet
discovered —

ren

The Sweep-line @
Method!

L1 1
Already s 4 W @
processed
Discovered but W'” : TW‘” e lose 2
1 real win 1
not yet &
processed
N 1_ 1_ Trun 2 run 2
of ye

rcnl win 1

discovered —> iy

O
W

The Sweep-line (@)
Methoc!

Already
processed

Discovered bur
not yer
processed

Not yet
discovered

The Sweep-line (@)
Method

Already
processed

Twin 2
@ win 1 @

Trun p run 2
Not yet

discovered @—»

win 1
0, | 2 3

Discovered bur
not yer
processed

A Neighbor List @
Representation

run 1 @
win 2 win 2 lose 2

@runl @winl@

run 2 Trun 2
run 1 win 1
e

run 2

Aassume we can hhor List

enumerate all

o ontation

0: run

1
l: run 2

2. win 1
3: win 2

@ run 1 @ win 1 @
run 2 Trun 2

run 1 win 1
—

run 2

ASSUMe we can bOr L|S.I-

enumerate all :
transitions: < n'l'a'l'lOn
O: run 1

I: run 2

2. win 1

3: win 2
4: lose 1

5: lose 2

o= bor List

number, 0...9, To

each state g n'|'a'|'|on

number, 0...9, To
edach state

A Neighbor List
Representation

A Neighbor List
Representation

OO~ DDIDIDD|ID

0)
1
2
3
4
S
6
7
8
9

A Nelghbor L|51L

OO,

A Neighbor List
Representation

Successor
state number

Building the Condensed
Representation

Building the Condensed
Representation

Building the Condensed
Representation

Building the Condensed
Representation

Building the Condensed
Representation

&

] |run2
run 1
- »{ (s,s, 0 - 0 -)@

0, |

Building the Condensed
Representation

Building the Condensed
Representation

2 | 2 | (01)7L2)

New header:

H bits used To Store each

successor

2 | 2 [(0,1 2)

Building the Condensed
Representation

2 | 2 | (01)7L2)

Building the Condensed
Representation

2 | 2 | (01)7L2)

3 win 2

@:unl@
>
5 O

1|run?2

runl@
= »E(S)S; =" >
o O 1

) B 1

Building the Condensed
Representation

22(1)(1)

Building the Condensed
Representation

22(1)(1)

Building the Condensed
Representation

22(1)(1)

Building the Condensed
Representation

22(1)(1)

Building the Condensed
Representation

Building the Condensed
Representation

Building the Condensed
Representation

2| 2](01) (.2)

2| 3](03) (3.4)

113](0,5)

Building the Condensed
Representation

2| 2](01) (.2)

2| 3](03) (3.4)

&
@2

1 run 2

@-C

TR |

Building the Condensed
Representation

2| 2](01) (.2)

Building the Condensed
Representation

(0.1 (.2)
2 | 31(L3) (2,6)
(0.3) (,4)

1|3 ((0,5)

Building the Condensed
Representation

AV
w
> [N S

™. ~
s | |
F i S B i 5l 5 8
< ~ ~
B Bt

Building the Condensed
Representation

AV
w
> [N S

™. ~
s | |
F i S B i 5l 5 8
< ~ ~
B Bt

Building the Condensed

Representation

of12(2](.) (.7)

Building the Condensed
Representation

~~ |/~ |~ |~
~ L <~ ~
S L NN | S’

L I S I B A TN B A 8 (N AN
Wl Wl Wi Ww|mN

ol K R ommd | o | B o S
N\ ~ S ~ ~
W L S N Bl e

Building the Condensed
Representation

~~ |/~ |~ |~
~ L <~ ~
S L NN | S’

L I S I B A TN B A 8 (N AN
Wl Wl Wi Ww|mN

ol K R ommd | o | B o S
N\ ~ S ~ ~

Building the Condensed

Representation

o412(2](.) (.7)

Building the Condensed
Representation

D T B oo SR e S
~ ~ ~ ~

il Ll I O B I 0 O B B A 2 I AN

PRI WI W W W]
TN LS | AN LTS R e
~ S ~ ~ -~ -~

S | i PN TR s NG | Naat?

Building the Condensed

Representation

,6)

3) (3
1) (5,

3 |(

3 ((

213](,7) (

\}
&
—
)
W\

N

o

— | N[~ |O|O]| N[00

Building the Condensed

Representation

,6)

3) (3
1) (5,

213](,7) (

\}
&
=
)
o

o

()

Building the Condensed

Representation

\}
ks
=
)
o

o

()

Building the Condensed@
Representation

/

/

(.2)
()
(.)
(2.5)

4
/
/
/

il L B B A 2 B A T IR AS BN BN AN

WP W W W W]

()
()
(0.3)
(2,7)
(©.5)
(+.2)
(L,7)

/

)
1
2
3
4
S
6
U
8

Building the Condensed@
: 9
Representation

/

/

(.2)
()
(.)
(2.5)

4
/
/
/

il L B B A 2 B A T IR AS BN BN AN

WP W W W W]

()
()
(0.3)
(2,7)
(©.5)
(+.2)
(L,7)

/

)
1
2
3
4
S
6
U
8

Building the Condensed@
: 9
Representation

/

(.2)
()
(.)
(4.5)

()
(,°)
(0.3)
()
(0.5)
(+.5)
(1,7)
(5.9)

Nlw|ldlwlwlw|lw]|

)
1
2
3
4
S
6
U
8
9

Building the Condensed@
: 9
Representation

/

(.2)
()
(.)
(4.5

()
(,°)
()
()
(©.5)
(+.5)
o,
(5.9)

HPlWIPlWW|W| WD

)
1
2
3
4
S
6
U
8
9

@

Building the Condensed@
: 9
Representation

/

(.2)
()
(.)
(4.5

()
(,°)
()
()
(©.5)
(+.5)
o,
(5.9)

HPlWIPlWW|W| WD

)
1
2
3
4
S
6
U
8
9

@

Building the Condensed

Representation

&

\}
&
i
)
o

o

(o)

Building the Condensed

Representation

&

\}
&
o
)
o

o

(e)

&

Building the Condensed
Representation

\}
&
o
)
o

o

(e)

Building the Condensed
Representation

)
&
o
)
A

QV

o

Evaluation of the
Algorithm

@ We only store a few (6) actual states
@ The condensed representation uses
4+|Rl-w + |El-(logITl + loglRI) + IFl-loglS| bits
@ R: all reachable states
® wW: Size of machine word
@ E: all reachable arcs
@ T: all transitions
@ S: all syntactically possible states
@ F: states on the front
@ Efficient standard representation
IRI-(3-w + log|SI) + IEl-loglS]

More Information about
the Algorithm

@ T. Mailund, M. Westergaard: Obtaining
Memory-Efficient Reachability Graph

Representations Using the Sweep-Line
Method, TACAS 2004

Backtrack
the State Space

Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

@ Idea of hash compaction: Store hash value for
each state only

Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

@ Idea of hash compaction: Store hash value for
each state only

@ Hash collision?

Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

@ Idea of hash compaction: Store hash value for
each state only

@ Hash collision?

@ Hash compaction fails

Backtrack
the State Space

@ We need to support the operations add(s) and
contains(s) but not any get operation

@ Idea of hash compaction: Store hash value for
each state only

@ Hash collision?
@ Hash compaction fails

® We will store for each state a predecessor
and trace from the initial state

Hash Compaction @

run 1 @
win 2

@runl@wim@

run 2 Trun 2 run 2
run 1
—p-

@ win 1

Hash Compaction @

nasn tuncrion,

o*u]@h}t]tﬁ@ TO
each Sstare a
hash-value

run 2 Trun 2 run 2

*-0:0

Hash Compaction @&

We assume a
each stare a
hash-value

Hash Compaction

Hash Compaction

hO

Hash Compaction

hO

Hash Compaction

hO

run 2

Hash Compaction

hO
hl

Hash Compaction @,;4

hO
hl
h2
h3
h4

Hash Compaction @;,4

hO
hl
h2
h3
h4

Hash Compaction @;,4

hO
hl
h2
h3
h4
h5

Hash Compaction

10,

hl

h2 TWin 2 lose 2
h3 @W_L

h4

h5 run 2] run 2 run 2

run 1 @Lnl)
hO hi h2

Hash Compaction @54

hO

hl

h2

h3

h4

h5

No need fto

re-explore
this sngvm

£ in
@,ju)\—\

h5

r J
ah3
run 2 run 2
run 1 ‘!Il!u win 1

Hash Compaction

10,

hl

h2 TWin 2 lose 2
h3 @W_L

h4

h5 run 2] run 2 run 2

run 1 @Lnl)
hO hi h2

Hash Compaction @;,4

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @54

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @54

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @;;4

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @54

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @54

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @;4

hO
hl
h2
h3
h4
h5
hé
h7

Hash Compaction @;4

hO
hl
h2
h3
h4
h5
hé
h7

The ComBack Algorithm

The ComBack Algorithm

The ComBack Algorithm

The ComBack Algorithm

The ComBack Algorithm

The ComBack Algorithm

=
h
e
¢
O
m
B
a
C
K A
g
O

:
it
h

m

The ComBack Algorithm

+$_‘
hO

The ComBack Algorithm

»-e
hO

The ComBack Algorithm

hol | o

+$~@
hO hl

The ComBack Algorithm

hO
hl

+$~@
hO hl

The ComBack Algorithm

hO
hl

+$ﬂ@
hO hl

The ComBack Algorithm

hO
hl

+$ﬂ@
hO hl

The ComBack Algorithm

1

hO
hl

+$ﬂ@
hO hl

The ComBack Algorithm

run1l|{0O

hO
hl

+$ﬂ@
hO hl

The ComBack Algorithm

run1(0 0
win 1|1 1
run 2 2 2 |
lose 2| 3 3
run 2| 1
4
5

We rediscover the Sta

nash-value, h3...
How do we Know, we have

seen the state before (i.e.

runl| O o |lit is not a hash -collision)?
win 1| 1 1
run 2| 2 2|
lose 2| 3 3
run 2| 1 |
4
5

We rediscover the siafe

The Co (w,d,d) and comput

hash-value, h3...

How do we Know, we have

seen the state before (i.e.

runl|O o |lit is not a hash -collision)?
winl]|l =]
run e B We backtrack
lose 2| 3 3
run 2| 1 |

4

5

We redaiscover the stare
The CO ‘w,d,d) and compufte -

nash-value, h3...

How do we Know, we have

seen the state before (i.e.

run 1 hC T IS NOT @ hash -@@J\Mlxg)wm\)?
win 1| i _ ; g

run 2 s
lose 2
run 2

We bacKTtrack

) ‘w,d.d)

i E

We rediscover the stare
\v,y//d@) and compute the
nash-value, h3...

How. do We Know, we have

3 1k i B ‘ | N ‘ '
Sseen the state betore (l.e.

T is not a hash -collision)?

|

We bacKTtrack

) (‘w,d.da)

i E

We reaiscover the Sta:
The CO ‘w,d,d) and compute the

nash-value, h3...

How. do We Know, we have

3 1k i B ‘ | N ‘ '
Sseen the state betore (l.e.

T is not a hash -collision)?

|

e

We bacKTtrack

) (‘w,d.da)

i E

We reaiscover the Sta:
The CO ‘w,d,d) and compute the

nash-value, h3...

How. do We Know, we have

3 1k i B ‘ | N ‘ '
Sseen the state betore (l.e.

T is not a hash -collision)?

|

e

We bacKTtrack

) (‘w,d.da)

i E

We reaiscover the Sta:
The CO ‘w,d,d) and compute the

nash-value, h3...

How. do We Know, we have

i B

Sseen the state betore (l.e.

e

1 O hC T is not a hash -collision)?
<2 | B8 We backtrack
ose E}... ,
run 2 sl

i E

We rediscover the Sta
The CO (w,d,d) and compute the
nash-value, h3...
Pa 15 il y \ 15 ~ -
..and ComBack PW do we Know, we have

, |] Sy) L Lo '
-een the state betore (i.e.

e

1 O hC T is not a hash -collision)?
<2 | B8 We backtrack
ose E}... ,
run 2 sl

i E

We rediscover The Sta
The CO (w,d,d) and compute the
nash-value, h3...
C 1 G il ' 1 | -
..and ComBack PW do we Know, we have
—een the stafe betore (l.e.

T is not a hash -collision)?

|

e

We bacKTtrack

) ‘w,d.d)

i E

We rediscover The Sta
The CO (w,d,d) and compute the
nash-value, h3...
C 1 G il ' 1 | -
..and ComBack PW do we Know, we have
—een the stafe betore (l.e.

T is not a hash -collision)?

|

e

We bacKTtrack

) ‘w,d.d)

i E

We rediscover The Sta
The CO (w,d,d) and compute the
nash-value, h3...
C 1 G il ' 1 | -
..and ComBack PW do we Know, we have
—een the stafe betore (l.e.

run 1 No t is not a hash -collision)?

|

e

We bacKTtrack

) ‘w,d.d)

i E

We rediscover The Sta
The CO (w,d,d) and compute the
nash-value, h3...
C 1 G il ' 1 | -
..and ComBack PW do we Know, we have
—een the stafe betore (l.e.

run 1 No t is not a hash -collision)?

|

e

We bacKTtrack

) ‘w,d.d)

i E

We rediscover the Sia:
The CO \Wgﬂ@) and computre the
nash-value, h3...
..and ComBack OW. dO We Know, we have
seen the state before (i.e.
run 1 hC T IS NOT @ hash -@@J\Mlxg)wm\)?
win 1 i | ; g

e

We bacKTtrack

) (‘w,d.da)

We rediscover The State

The CO ‘w,d,d) and compute the
hash-value, h3...

.and ComBack OW. dO we N'N@\W, we have

. i 1 i i § | . |
>een fthe state beftore (i.e.

run 1 hC T is not a hash -collision)?
win 1 Il | 1 o ;

We bacKTtrack

* (W d.da)

i B

We rediscover the Sstate
2)

i B

Th e 0o w,d,d) and compute the

p

nash-value, h3...
and ComBack PW do we Know, We have

i B ik L

>en the Starte berore \(le
--and norice we S not a hash -collision)?
nave (re-)arrived i
at (w,d,d). No L8
need TO proceed
run 2| 1 | B —

We backtrack

* ‘w,d.d)

The ComBack Algorithm

run1(0 0
win 1|1 1
run 2 2 2 |
lose 2| 3 3
run 2| 1
4
5

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
win 2
lose 1

oclnij—mlw|i|— O

N~ ool lwip|i— O

The Corr By TR

backtracking,
we discover Thar
The discovered State

(w,1,d)

ru?n 110 corresponaing 1o n3
win 1] 1 is (w,d,d), so (s,d,u)
run 2| 2 3,

lose 2| 3 iz

run 2| 1

win 2| 5

lose 1| 6

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
win 2
lose 1

oclnij—mlw|i|— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
win 2
lose 1

oclnij—mlw|i|— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
win 2
lose 1

oclnij—mlw|i|— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1

ocluij—mfwin|(—|O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

backtrack for state 3
and &, and obtain

(w,d,d) and (s,d,u), so

(s,w,d) is new

run 1
win 1
run 2
lose 2
run 2
win 2
lose 1
run 2

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
A |lose 2
run 2
{|win 2
lose 1
run 2

oOlocclnMi—m WD |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
lose 2
run 2
win 2
||lose 1
run 2

oOlcclnMf—m W[V |[— O

N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
lose 2
run 2
win 2
||lose 1
run 2
win 2

wOjlcN|—m(WiD|— O
N~ ool lwip|i— O

The ComBack Algorithm

run 1
win 1
run 2
lose 2
run 2
win 2
lose 1
run 2
win 2

wOjlcN|—m(WiD|— O
N~ ool lwip|i— O

0
1
2
3
4
5
6
7
8
9

Evaluation of the
Algorithm

@ The algorithm uses
RI‘(Ww + (2'w + h)) + 2:|R[:(h + logITI) =
IRI-(3:(w + h) + logITl) <= 7-w:|R|
@ R: reachable states
® w: Size of machine word
@ h: size of hash-value
@ T: transitions
@ Experiments show that 16-w:|R| is used
@ log|T| = 3-w
@ In SML-NJ everything is a reference

More Information about
the Algorithm

@ L. Arge, G.S. Brodal, S. Christensen, L.M.
Kristensen, and M. Westergaard: The
ComBack State Space Exploration Method:
Combining Hash Compaction with
Backtracking, not yet submitted

Conclusion

@ BRITNeY animation: formalism-independent
tool for making formal models look good

@ State space tool: formalism-independent
platform for experimenting with mulfiple
reduction methods of state spaces

