
Petri-net Based Animation with
CPN Tools and BRITNeY

animation
Michael Westergaard

mw@daimi.au.dk

Department of Computer Science
University of Aarhus

5th CPN Workshop – p. 1/56

Motivation

� High-level graphics makes it easier to
demonstrate and communicate models

5th CPN Workshop – p. 2/56

Overview

� Architecture
� Hello World
� Dining Philosophers
� Stop Signal
� A closer look at ShowModal
� Future work & conclusion

5th CPN Workshop – p. 3/56

Overview

� Architecture ⇐

� Hello World
� Dining Philosophers
� Stop Signal
� A closer look at ShowModal
� Future work & conclusion

5th CPN Workshop – p. 3/56

Overall Architecture

CPN Simulation
Engine

CPN Tools
GUI Animation

framework

XML-RPCDMO

TCP/IP

Beta Standard ML Java

Animation
objects

5th CPN Workshop – p. 4/56

Why Java?

� Well-known by many computer scientists
� Well-suited for creating graphics
� A huge number of libraries already exist =⇒

it is easy to create even very complex
animation objects

5th CPN Workshop – p. 5/56

Overview

� Architecture
� Hello World ⇐

� Dining Philosophers
� Stop Signal
� A closer look at ShowModal
� Future work & conclusion

5th CPN Workshop – p. 6/56

Hello World (1/3)

The purpose of this example is
� to introduce connections
� to see the ShowModal and GetString

animation objects
� to see how the animation functions can be used

5th CPN Workshop – p. 7/56

Hello World (2/3)

� We want to model
part of a hotel

� We focus on the
clerk at the counter

� When a guest enters
the clerk asks for his
name

� The clerk then greets
the guest

5th CPN Workshop – p. 8/56

Hello World (3/3)

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

e

"Bob"

name

name

� We notice that we
have hard-coded the
name of the guest

� We would rather
allow the user to act
as the guest

� . . . for this we will
use some simple
standard functions

5th CPN Workshop – p. 9/56

Hello World (3/3)

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

e

"Bob"

name

name

� We notice that we
have hard-coded the
name of the guest

� We would rather
allow the user to act
as the guest

� . . . for this we will
use some simple
standard functions

5th CPN Workshop – p. 9/56

Hello World (3/3)

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

e

"Bob"

name

name

� We notice that we
have hard-coded the
name of the guest

� We would rather
allow the user to act
as the guest

� . . . for this we will
use some simple
standard functions

5th CPN Workshop – p. 9/56

Setting up a Connection (1/2)

� In order to use the animation package, we must
first set up a connection to an animation object

� In this example, we will add the declaration
structure msg =
ShowModalInstance(

val name = "Message");

� This can be thought of as creating a proxy
object, msg, with an interface, ShowModal, in
e.g. Java

5th CPN Workshop – p. 10/56

Setting up a Connection (2/2)

� The interface of ShowModal is:
sig
val displayMessage: string -> int

end

� That is, we can call
msg.displayMessage("Hello World")

to show the message “Hello World” to the user

5th CPN Workshop – p. 11/56

Using Animation Functions (1/2)

� CPN Tools allows code-fragments to be
executed whenever a transition occurs

� Code-fragments have the syntax:
input (...)
output (...)
action
...

5th CPN Workshop – p. 12/56

Using Animation Functions (2/2)

� We can use code-
fragments to tie the
animation to our
model:

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

input name;
output ();
action
msg.displayMessage("Hello "^ name); ();

e

"Bob"

name

name

5th CPN Workshop – p. 13/56

Using Animation Functions (2/2)

� We can use code-
fragments to tie the
animation to our
model:

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

input name;
output ();
action
msg.displayMessage("Hello "^ name); ();

e

"Bob"

name

name

5th CPN Workshop – p. 13/56

Using Animation Functions (2/2)

� We can use code-
fragments to tie the
animation to our
model:

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

Say
Hello

input name;
output ();
action
msg.displayMessage("Hello "^ name); ();

e

"Bob"

name

name

input name;
output ();
action
msg.displayMessage("Hello " ˆ name); ();

5th CPN Workshop – p. 13/56

Asking for a Guest’s Name (1/2)

� We create a connection
structure input =
GetStringInstance(

val name = "Question");

with the interface:
sig
val getString:

string * string -> string
end

5th CPN Workshop – p. 14/56

Asking for a Guest’s Name (2/2)

� . . . and use it in our
model

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

input ();
output name;
action
input.getString("What is your name?","");

Say
Hello

input name;
output ();
action
msg.displayMessage("Hello "^ name); ();

e

name

name

name

5th CPN Workshop – p. 15/56

Asking for a Guest’s Name (2/2)

� . . . and use it in our
model

Waiting
Guests

E

1‘e

Known
Guests

NAME

Greeted
Guests

NAME

Get
Name

input ();
output name;
action
input.getString("What is your name?","");

Say
Hello

input name;
output ();
action
msg.displayMessage("Hello "^ name); ();

e

name

name

name

5th CPN Workshop – p. 15/56

So Far, We Have Seen. . . (1/3)

. . . how to create connections to an animation
object:
structure msg =
ShowModalInstance(

val name = "Message");

5th CPN Workshop – p. 16/56

So Far, We Have Seen. . . (2/3)

. . . 2 animation object interfaces:
� ShowModal:
sig
val displayMessage: string -> int

end

� GetString:
sig
val getString:

string * string -> string
end

5th CPN Workshop – p. 17/56

So Far, We Have Seen. . . (3/3)

. . . how to use connections in our nets using
code-fragments:
input name;
output ();
action
msg.displayMessage("Hello " ^ name); ();

5th CPN Workshop – p. 18/56

Overview

� Architecture
� Hello World
� Dining Philosophers ⇐
� Stop Signal
� A closer look at ShowModal
� Future work & conclusion

5th CPN Workshop – p. 19/56

Dining Philosophers (1/2)

The purpose of this example is
� to see the GraphSheet animation object
� to see how we can write small libraries using

the animation functions

5th CPN Workshop – p. 20/56

Dining Philosophers (2/2)

Eat

PH

Think

PH

PH.all()

Unused
Chopstics

CS

CS.all()

Take
Chopsticks

Put Down
Chopsticks

p

p

Chopsticks(p)

p

Chopsticks(p)

p

5th CPN Workshop – p. 21/56

GraphSheet

� We want to generate and draw the state-space
� For this, we will use GraphSheet:
sig
val createVertex: string -> int
val createEdge:

string * string * string
-> int

val doLayout: unit -> int
val export: unit -> int

end

5th CPN Workshop – p. 22/56

State-space Functions (1/2)

� The CPN Tools state-space tool provides a
number of functions:
val EvalAllNodes:

(Node -> ’a) -> ’a list
val EvalAllArcs:

(Arc -> ’a) -> ’a list
val SourceNode: Arc -> Node
val DestNode: Arc -> Node
val st_Node: Node -> string

5th CPN Workshop – p. 23/56

State-space Functions (2/2)

� SourceNode(a) = A

� DestNode(a) = B

� st_Node(A) = "A"

� EvalAllNodes(fn x =>
x)
= [A, B, C]

� EvalAllArcs(fn x => x)
= [a, b, c]

A

B

C

a

b

c

5th CPN Workshop – p. 24/56

Drawing all Nodes

We assume a connection to a GraphSheet
animation object named graph

� Draw one node, A:
graph.createVertex(st_Node(A))

� Draw an arbitrary node:
fun drawNode n =

graph.createVertex(st_Node(n))

� Draw all nodes:
EvalAllNodes(drawNode)

5th CPN Workshop – p. 25/56

Drawing all Nodes

We assume a connection to a GraphSheet
animation object named graph

� Draw one node, A:
graph.createVertex(st_Node(A))

� Draw an arbitrary node:
fun drawNode n =

graph.createVertex(st_Node(n))

� Draw all nodes:
EvalAllNodes(drawNode)

5th CPN Workshop – p. 25/56

Drawing all Nodes

We assume a connection to a GraphSheet
animation object named graph

� Draw one node, A:
graph.createVertex(st_Node(A))

� Draw an arbitrary node:
fun drawNode n =

graph.createVertex(st_Node(n))

� Draw all nodes:
EvalAllNodes(drawNode)

5th CPN Workshop – p. 25/56

Drawing all Arcs

� Draw one arc, a, from A to B:
graph.createEdge(

st_Node(A), st_Node(B), "")

5th CPN Workshop – p. 26/56

Drawing all Arcs

� Draw one arc, a, from A to B:
graph.createEdge(

st_Node(A), st_Node(B), "")

� Draw one arc, a:
graph.createEdge(

st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

5th CPN Workshop – p. 26/56

Drawing all Arcs

� Draw one arc, a:
graph.createEdge(

st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

� Draw an arbitrary arc:
fun drawArc a =

graph.createEdge(
st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

5th CPN Workshop – p. 26/56

Drawing all Arcs

� Draw one arc, a:
graph.createEdge(

st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

� Draw an arbitrary arc:
fun drawArc a =

graph.createEdge(
st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

� Draw all arcs:
EvalAllArcs(drawArc)

5th CPN Workshop – p. 26/56

All Drawing-code (1/3)

fun drawNode n =
graph.createVertex(st_Node(n))

EvalAllNodes(drawNode)

fun drawArc a =
graph.createEdge(

st_Node(SourceNode(a)),
st_Node(DestNode(a)), "")

EvalAllArcs(drawArc)

5th CPN Workshop – p. 27/56

All Drawing-code (2/3)

� The code does not depend on the net at all
� We may want to draw state-spaces for other

nets as well
� =⇒ creating a small library seems like a good

idea
� We will then be able to draw a state-space by

issuing:
use("visualise.sml")

5th CPN Workshop – p. 28/56

All Drawing-code (3/3)

� A slightly more elaborate library has been
implemented
� Support for drawing only parts of a

state-space
� Support for better names of nodes and arcs

� Using this library, drawing a state-space is as
simple as:
use("visualise.sml");
NiceLabels();
DrawEntireGraph();

5th CPN Workshop – p. 29/56

So Far, We Have Seen. . . (1/2)

. . . the GraphSheet animation object interface:
sig
val createVertex: string -> int
val createEdge:

string * string * string
-> int

val doLayout: unit -> int
val export: unit -> int

end

5th CPN Workshop – p. 30/56

So Far, We Have Seen. . . (2/2)

. . . how to
� use GraphSheet with the state-space functions
� create a small library for drawing state-spaces,

which can be used as:
use("visualise.sml");
NiceLabels();
DrawEntireGraph();

5th CPN Workshop – p. 31/56

Overview

� Architecture
� Hello World
� Dining Philosophers
� Stop Signal ⇐
� A closer look at ShowModal
� Future work & conclusion

5th CPN Workshop – p. 32/56

Stop Signal (1/3)

The purpose of this example is
� to introduce the SceneBeans animation object

� Creating animation-description files
� Loading animation-description files
� Invoking commands in the animation
� Setting parameters in the animation
� Listening for events from the animation

5th CPN Workshop – p. 33/56

Stop Signal (2/3)

� A danish stop signal
cycles between the
colours:
� green
� yellow
� red
� yellow + red

� We want to model
this

5th CPN Workshop – p. 34/56

Stop Signal (3/3)

Green

E

e

Yellow

E

Red

E

Yellow
Red

E

e e

e

e

e

e

e

e

� We would like
to visualise
this. . .

5th CPN Workshop – p. 35/56

SceneBeans (1/3)

� From the SceneBeans homepagea: “SceneBeans
is a Java framework for building and controlling
animated graphics. . . It is used in the LTSA tool to
animate formal models of concurrent systems”

� SceneBeans was designed and implemented by
Nat Pryce of Imperial College, London

ahttp://www-dse.doc.ic.ac.uk/Software/SceneBeans/

5th CPN Workshop – p. 36/56

http://www-dse.doc.ic.ac.uk/Software/SceneBeans/

SceneBeans (2/3)

� A SceneBeans animation is described using
XML

� Once an animation is started, it communicates
with the surroundings using
� commands
� events

� SceneBeans is written in Java. . . why not try to
use it?

5th CPN Workshop – p. 37/56

SceneBeans (3/3)

The interface of SceneBeans is:
sig
val setAnimation: string -> int

val getNextEvent: unit -> string
val peekNextEvent: unit -> string
val waitForEvent: string -> int
val hasMoreEvents: unit -> bool

val setValue:
string * string * string -> int

val invokeCommand: string -> int
end

5th CPN Workshop – p. 38/56

Definition of an XML File

� We create an XML file describing the animation
of our model

� Assuming we have a connection to a
SceneBeans animation object named lights,
we can load our XML file using:
lights.setAnimation("stop.xml");

5th CPN Workshop – p. 39/56

Clearing all High-lights

� In the XML file file, a clear command is
defined

� The clear command can be invoked by:
lights.invokeCommand("clear");

5th CPN Workshop – p. 40/56

High-lighting a Circle

� As the red, yellow, and green circles have an
ID-attribute, we can change the value of their
parameters

� We can change the value of the color-parameter
of the red circle by:
lights.setValue(

"red",
"color",
"ff0000");

5th CPN Workshop – p. 41/56

Waiting for User Input

� Whenever a user clicks on the green circle, an
event is sent

� We can listen for events using:
lights.getNextEvent();)

5th CPN Workshop – p. 42/56

So Far, We Have Seen. . .

. . . how to use the SceneBeans animation object; in
particular how to:

� create animation-description files
� load animation-description files
� invoke commands in the animation
� set parameters in the animation
� listen for events from the animation

5th CPN Workshop – p. 43/56

More on SceneBeans

� The Telebit example from the start of the talk is
created using the SceneBeans animation object

� Visit SceneBeans’ homepagea for more
information on writing animation-description
files

ahttp://www-dse.doc.ic.ac.uk/Software/SceneBeans/

5th CPN Workshop – p. 44/56

http://www-dse.doc.ic.ac.uk/Software/SceneBeans/

Overview

� Architecture
� Hello World
� Dining Philosophers
� Stop Signal
� A closer look at ShowModal ⇐
� Future work & conclusion

5th CPN Workshop – p. 45/56

A Closer Look at ShowModal

� It is easy to create an animation object:
1. Create a Java class implementing a certain

interface
2. Generate appropriate ML code using

rmicompiler

5th CPN Workshop – p. 46/56

Petri-net Based Prototyping (1/2)

� Using JBuilder, a very rough outline of a dialog
is created

� A couple accessor methods are added
� Using the rmicompiler, an ML interface is

created
� In 15 minutes, a nice dialog can be used from a

net

5th CPN Workshop – p. 47/56

Petri-net Based Prototyping (2/2)

� This way it is easy to get input and present
output

� We use Petri-nets to “program” the control
flow

� Combining this, we obtain executable
prototypes in a very easy manner

5th CPN Workshop – p. 48/56

BRITNeY animation↔MIMIC/CPN

MIMIC/CPN BRITNeY animation

very general and low-level encourages use of domain-specific,
high-level animation objectsa

animations can be de-
signed using a GUI

(currently) no such feature

synchronous only asynchronous features designed

extended by ML libraries extended by ML libraries or by cre-
ating new animation objects in Java

aBut a number of quite general animation objects exist
5th CPN Workshop – p. 49/56

Overview

� Architecture
� Hello World
� Dining Philosophers
� Stop Signal
� A closer look at ShowModal
� Future work & conclusion ⇐

5th CPN Workshop – p. 50/56

Future Work

� Clean up and make 1st release
� Implementaiton of more animation objects
� New architecture

5th CPN Workshop – p. 51/56

More Animation Objects

� Message sequence charts
� Charts (for use with e.g. the performance

facilities)
� Report generator (to create nice

simulation/state-space reports)
� Framemork for Petri-net based rapid

prototyping
� PNVis (Kindler & Páles: 3D-Visualization of

Petri Net Models)
� . . .

5th CPN Workshop – p. 52/56

Current Architecture

CPN Simulation
Engine

CPN Tools
GUI Animation

framework

XML-RPCDMO

TCP/IP

Beta Standard ML Java

Animation
objects

5th CPN Workshop – p. 53/56

New Architecture

CPN Simulation
Engine

CPN Tools
GUI Animation

framework

TCP/IP

Beta Standard ML Java

XML-RPC

5th CPN Workshop – p. 54/56

Benefits of the New Architecture

� The simulation can be controlled better from
the animation, by e.g. adding tokens to a place
=⇒ the animation can run without the CPN
Tools GUI

� Simulation can be started and stopped from
the animation package

� Certain animations may be shown directly in
the CPN Tools GUI

� Certain animations may be defined in CPN
Tools and exported to the animation tool

5th CPN Workshop – p. 55/56

Summary

During this talk, we have seen
� How to create connections to animation objects
� A number of different animation objects

� ShowModal
� GetString
� GraphSheet
� SceneBeans

� How to use animations with nets
� in code-fragments
� to create extension-libraries

5th CPN Workshop – p. 56/56

	Motivation
	Overview
	Overview

	Overall Architecture
	Why Java?
	Overview
	Hello World (1/3)
	Hello World (2/3)
	Hello World (3/3)
	Hello World (3/3)
	Hello World (3/3)

	Setting up a Connection (1/2)
	Setting up a Connection (2/2)
	Using Animation Functions (1/2)
	Using Animation Functions (2/2)
	Using Animation Functions (2/2)
	Using Animation Functions (2/2)

	Asking for a Guest's Name (1/2)
	Asking for a Guest's Name (2/2)
	Asking for a Guest's Name (2/2)

	So Far, We Have Seendots (1/3)
	So Far, We Have Seendots (2/3)
	So Far, We Have Seendots (3/3)
	Overview
	Dining Philosophers (1/2)
	Dining Philosophers (2/2)
	GraphSheet
	State-space Functions (1/2)
	State-space Functions (2/2)
	Drawing all Nodes
	Drawing all Nodes
	Drawing all Nodes

	Drawing all Arcs
	Drawing all Arcs
	Drawing all Arcs
	Drawing all Arcs

	All Drawing-code (1/3)
	All Drawing-code (2/3)
	All Drawing-code (3/3)
	So Far, We Have Seendots (1/2)
	So Far, We Have Seendots (2/2)
	Overview
	Stop Signal (1/3)
	Stop Signal (2/3)
	Stop Signal (3/3)
	SceneBeans (1/3)
	SceneBeans (2/3)
	SceneBeans (3/3)
	Definition of an XML File
	Clearing all High-lights
	High-lighting a Circle
	Waiting for User Input
	So Far, We Have Seendots
	More on SceneBeans
	Overview
	A Closer Look at ShowModal
	Petri-net Based Prototyping (1/2)
	Petri-net Based Prototyping (2/2)
	BRITNeY animation$leftrightarrow $	extsc {Mimic/CPN}
	Overview
	Future Work
	More Animation Objects
	Current Architecture
	New Architecture
	Benefits of the New Architecture
	Summary

