
Chapter 1

Introduction

Modern computer systems are very important to our lives. Use spans from
space shuttles and robots investigating foreign planets over critical hospital
systems, power-plant control and computer systems controlling aeroplanes and
cars, to home banking, e-mail, and word processing.

Some of the systems using computers can be considered highly critical, ei-
ther because they are very expensive to produce, such as robots investigating
foreign planets, or because human lives depend on them, such as computers
controlling aeroplanes and cars, and systems in hospitals and power-plants.
These systems need to be correct, because their failure can cause loss of hu-
man lives or enormous economical losses. Faulty computer software has been
the cause of numerous disasters [81]. Disasters range from killing at least six
people due to radiation overdoses because the Therac-25 radiation therapy ma-
chine [109] was unable to detect a human error and issue a warning, over eco-
nomical losses, including the Ariane 5 lifting rocket [39], which self-destructed
because a 64 bit floating point value was erroneously converted to a 16 bit inte-
ger and the error handler, which was supposed to take care of errors when too
large values were converted, had been disabled for efficiency reasons, causing
the computer to crash. The Mars Climate Orbiter [48] crashed while trying to
land due to a mix-up between metric and U.S. customary units, causing the loss
of the robot. NASA satellite software designed to measure holes in the ozone
layer [129] ignored values deviating from the expected values caused a hole in
the ozone layer to be ignored for eight years. These examples illustrate how
errors in computer software can lead to vast economical losses, environmental
disasters, and loss of human lives, so for critical software it is worth the effort
to ensure that the software has no errors.

The goal of this work is to contribute to the design and improvement of
methods for avoiding such catastrophic computer malfunctions. This is done by
constructing a formal model of the system we wish to construct, validate that
the formal model corresponds to the intended system using a domain-specific
visualisation, and formally verify that the formal model satisfies properties re-
quired of the system, e.g., that it is impossible for a human error to cause the
death of other humans. Correctness depends on the computers themselves, the
hardware, and the programs they run, the software. Both are equally impor-
tant and need to be correct in order for the entire system to be correct. In this
thesis we focus on the correctness of the software, not because the hardware is
deemed less important, but because we assume that somebody else takes care
of the correctness of hardware.

In the rest of this chapter, we first describe what we consider formal models
of computer systems. We then turn to describing how to verify the behaviour
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of formal models and how to visualise that behaviour. After that we provide
directions for arriving at a correct implementation from the formal model, and
we end this chapter by providing a guide to the rest of this thesis.

1.1 Approaches to Software Validation

One classical approach to program correctness is to annotate them with for-
mal expressions, e.g., using Hoare logic [70], from which we can derive desired
correctness properties. We must manually or semi-automatically prove that
the program indeed satisfies these annotations. This approach has a number
of disadvantages. Firstly, the approach requires that humans manually find
the correct annotations and prove their correctness. This is a lot of manual
work, which is very difficult for large systems. Secondly, the approach requires
that whenever a change is made to the system, some expressions must be re-
evaluated and re-proven, which makes changes expensive.

Given the limitation of classical approaches to correctness, we instead con-
sider an approach based on construction of models. To illustrate this, we con-
sider a parallel in the physical world, namely building a house. When a cus-
tomer wants a new house, but is unable to build it himself, he hires some con-
tractors to do it for him. The customer here corresponds to the customer who
wants a computer program, and the contractors correspond to software com-
panies or programmers. The customer can send requirements (such as size,
number, and placement of rooms) to the contractors, who then build the house
according to their interpretation of these requirements. The requirements from
the customer have a direct counterpart in the computer software, where we call
such requirements a requirements specification or just specification for short.
The specification may be more or less precise and state what is required of the
computer program. This is illustrated in Fig. 1.1(a). Here we see the customer
(upper left corner) write a specification (lower left corner), which is then inter-
preted by the contractor (middle), who builds a house, (right), based on his in-
terpretation of the specification. As we can see, the specification is ambiguous
(what is “red” and how should the 180 m2 be distributed?) and incomplete (what
should the roof look like?), which leads to multiple possible implementations.
If the construction of the building has been outsourced to multiple contractors,
they would probably interpret the specification in different ways, which could
lead to houses that could not even be assembled in the end (e.g., the roof of the
interpretation (I) is too small for (II) ). The same problems arise when dealing
with software. Ambiguities lead to software that does not do what the customer
intended and different interpretations by different software companies or pro-
grammers lead to components that cannot inter-operate. In Fig. 1.1(b), we see
that the customer thinks of a protocol which allows two computers to communi-
cate in both directions over a wireless link, but the specification is ambiguous
(what is “nodes”) and incomplete (it does not state that communication should
be bi-directional and over a wireless link), so the programmer, corresponding
to the contractor in the house example, may implement the protocol under the
assumption that two stationary computers communicate over a wired link (I)
or as a media-server communicating uni-directionally with a computer over a
satellite link (II).

In the real world, a contractor would not work directly from the specifica-
tion provided by the customer. Instead, an architect would try to interpret the
requirements from the customer and create a precise and complete represen-
tation in the form of blueprints. This situation is depicted in Fig. 1.2. Now
the contractor is certain of how the house should be constructed, and multi-
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Figure 1.1: Construction directly from the specification.
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Figure 1.2: Construction using a formal model.

ple contractors can be hired to make the different parts of the house with-
out problems. This approach is better than the previous one, as we have ob-
tained a precise and complete description of the house we want to construct.
We can use this approach for software construction as well. Here we call the
blueprints a formal model of the program. We require that the formal model
is constructed in a formal language with a formal semantics, such as coloured
Petri nets [91], state charts [65], message sequence charts [67] (a variant of
which is known as UML [131] sequence diagrams), Petri nets [138], CCS [123],
PROMELA [77,154], ambient calculus [17], or π-calculus [124]. We will not al-
low a formal model to be specified as a natural language specification or using
semi-formal notations such as UML [131]. The formal model is constructed by
a formal methods expert.

While the method in Fig. 1.2 ensures that we get a precise and complete
formal description of what to construct, it does not ensure that the formal
model corresponds to the customer’s intentions. We can see in Fig. 1.2 that
the house/network protocol the customer is thinking of is different from the
one constructed by the contractor/programmer. This is because the original
natural-language specification was not accurate or because the architect mis-
understood it. We would therefore like the customer to validate that the formal
description (the blueprints or the formal model) of the system corresponds to
his intentions. Alas, the customer may not understand the blueprints or formal
model. This may be stretching the parallel a little, as most people have some
understanding of how to read blueprints, but it may not be easy to understand
how the living room will look in afternoon sunlight from a set of blueprints.
In any case, the customer is seldom able to read a formal model of a software
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Figure 1.3: Using visualisation to ensure the formal model corresponds to the
customers intentions.

system, and this is the scenario we are really interested in.

To make the customer understand the model of the system, we assume that
the architect/formal methods expert or somebody else, who understands the
formal model, creates a visualisation of the model. In the house example, a
three dimensional physical model of the house may be constructed. It is placed
in a physical model of the surroundings, which allows the customer to look at
the model and see if it fits with his ideas. He may even experiment with it, e.g.,
by moving a lamp around it simulating how the sun looks at different times of
the day. This visualisation may cause the customer to improve the specifica-
tion by making requirements more precise and by specifying things missing in
the original specification. In the physical world, the blueprints would then be
updated and a new visualisation would be created. This is shown in Fig. 1.3(a).
In the software world, we would create a visualisation of the software we are
about to write, corresponding, e.g., to a prototype [44], and let the user ex-
periment with the prototype, thereby improving the specification. Often the
prototype runs as a computer program, as shown in Fig. 1.3(b).

By the method in Fig. 1.3, we can construct a complete formal model of
the system we want to construct. The idea is to use this formal specification to
check properties of the system we want to eventually construct. In the physical
world we may want to check that the house abides by the legislation (e.g. it
may be illegal to construct red houses in a certain neighbourhood), and that
it is physically possible to construct the house (e.g. that the roof is not too
heavy). This can be done as outlined in Fig. 1.4. Here we assume a blueprint
or a formal model—which may or may not correspond to some real system—
and some requirements. In the physical world an engineer would look at the
requirements and the blueprints together, and either arrive at the conclusion
that the blueprints satisfies the requirements, or find some errors, which are
then fixed in the blueprints, e.g., by requiring that the walls of the house is
made of more solid material. In the software world, we assume that the formal
model and the requirements are on some form we can use as input to a verifier.
The verifier can give two answers, either the requirements hold or they do
not. If the requirements hold, we are satisfied with an “Ok” from the verifier,
whereas we would like an error report if the requirements are not satisfied
by the model. We can use this error report as input for further refinement
of the model and the requirements. Sometimes the error is really an error in
the model, either because we have incorrectly modelled the requirements (for
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Figure 1.4: Verification of formal models.

example if the requirements specifies sufficiently strong walls but the model
incorrectly specifies the strength as too low) or because the requirements are
incorrect (for example if the requirements specify that walls should be too thin,
so they are not able to carry the roof). In that case, we need to change the model
and/or the requirements. Sometimes the error is an erroneous requirement,
e.g., a too strict requirement (for example houses may be allowed to be red,
just not crimson). Whenever we fix an error in the formal model, we also fix
an error in the product, assuming that the product is constructed exactly as
described by the formal model.

1.2 Behavioural Models of Concurrent Systems

Until now, we have talked about formal models of computer systems without
defining what we mean by that. In the physical world a model of the product,
e.g., a house, is an abstract representation of the product, and we want a for-
mal model of a computer system to also be an abstract representation of the
product, i.e., the implementation. The advantage of a more abstract represen-
tation is manifold. Firstly, it is often cheaper to construct an abstract model,
as we do not have to deal with a lot of details, just like it is easier to draw a
straight line and say it represents a wall of concrete than actually building the
wall. Secondly, a more abstract representation usually has simpler behaviour,
which makes analysis tractable for more complex systems.

In the rest of this thesis we solely focus on models of the behaviour of con-
current systems [138], i.e., systems where computation is performed in multi-
ple components or threads. Examples span from multi-threaded applications
running on a single computer, such as a word processor which is able to con-
tinue working while sending a document to the printer, to complex distributed
algorithms, such as network protocols which requires the cooperation between
multiple computers connected via a network to provide a service, such as trans-
mitting packets safely over a faulty network. We consider concurrent systems
rather than single-threaded programs as the behaviour of concurrent systems
is much more complex. Correct behaviour of single-threaded systems can usu-
ally be verified using, e.g., unit-testing [5], whereas concurrent systems not
only depend on the input to the program, but also on the timing of each com-
ponent relative to the other components, which makes is difficult to write tests
that, in a reproducible way, exercise all possible interleavings of the compo-
nents in question.
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So, what is an abstract representation of a concurrent system? Suppose
we are to create a network protocol for transmitting packets over an unreli-
able network. If we were to actually implement the protocol, we would need
to worry about receiving actual data from the network, which is operating
system-specific, we would need to decode binary data in order to put it into a
form where we can process it, and we would need to set up equipment to actu-
ally test our implementation. These implementation details and many others
like them make the implementation complex and may hide the real application
logic. A model of a network protocol may disregard all of these implementation
details, and can therefore focus on what we are actually interested in, namely
the behaviour of the protocol. A real prototype or implementation would also
suffer from the fact that some actions happen very rarely in reality, but when
they happen the correctness of the system can be affected. As an example,
packet losses happen rarely in real settings, but depending at which point they
happen during the execution of a network protocol, they can have catastrophic
consequences. A model of the system can be controlled, and we can intention-
ally drive the model into rarely occurring situations to observe the behaviour
of the system in such situations.

To describe our models, we need a modelling language. Most of the work
described in this thesis has been developed in the context of coloured Petri
nets [91], but is independent of the formalism, and could have been created us-
ing many other formal modelling languages. A coloured Petri net is a labelled
directed bipartite graph. In Fig. 1.5(a) we see a simple model of a network
protocol, created in CPN Tools [C1,33], a tool for modelling with coloured Petri
nets. The model is the same as the one used in [T3] (except for typograph-
ical changes), which is a simplified version of a network protocol introduced
in [91]. The nodes of a coloured Petri net are called places and transitions,
and are drawn as ellipses and rectangles, respectively. The model in Fig. 1.5(a)
has six places, Out Buffer, Send ID, Network 1, In Buffer, Receive ID, and Net-
work 2, and four transitions, Send Data, Drop, Receive Data, and Receive Ack.
Places have an associated type and can contain a multi-set of tokens of that
type. For example, in Fig. 1.5(a), the place Out Buffer has type PACKET and
contains two tokens. The number of tokens is written inside the circle next to
the place and the values of the tokens are written inside the rectangle nearby.
On the place Out Buffer, each token is a pair of a packet sequence number and
the packet contents (i.e., of type PACKET). We see that a packet numbered 1
containing ”Formal” is scheduled to be transmitted as is packet number 2 with
data ” model”. A transition is enabled if there exist an assignment of values to
all variables around it so that all the tokens required by arc expressions, with
the proper values inserted, are available on input places (places connected to
a transition via an arc from the place to the transition). As an example, pack-
ets are transmitted by the Send Data. This transition is enabled in Fig. 1.5(a)
if we assign the value 1 to id and ”Formal” to data. We write Send Data{id =
1, data = ”Formal”} to represent the transition Send Data with this binding of
its variables. In Fig. 1.5(a) we have indicated that Send Data{id = 1, data =
”Formal”} is enabled by a green highlighting of the transition Send Data. If a
transition is enabled it can be executed and the result is that tokens are re-
moved from input places according to the arc expressions and new tokens are
produced on output places (places connected to the transition via an arc from
the transition to the place) according to the arc expressions. A double arc is
just an abbreviation for an arc in each direction with the same expression. The
result of executing Send Data{id = 1, data=”Formal”} in Fig. 1.5(a) is shown in
Fig. 1.5(b). Here a new packet is produced on the place Network 1, correspond-
ing to transmitting a packet onto the network. The packet is not removed from
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Figure 1.5: A formal model of a simple protocol able to transmit packets over a
network which may drop packets.

the Out Buffer, so it can later be retransmitted if needed. The newly produced
packet can be dropped (Drop{id = 1, data = ”Formal”}) or successfully received
(Receive Data{id = 1, data = ”Formal”, packets = []}). When packets are received,
the counter on Receive ID is incremented by one, the packet is saved in the In
Buffer, and an acknowledgement is sent back to the sender, so it knows that the
packet is successfully transmitted. Receive Ack receives such an acknowledge-
ment, increments the counter in Send ID, so the sender can start transmitting
the next packet. We see that this models a simple network protocol, which is
able to transmit packets over a network that may drop packets. The details
of how the network works have been abstracted away and packets are repre-
sented in an abstract way, so we do not have to perform complex translations
of binary data, which would hide the application logic.
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1.3 Verification of Formal Models

Now we focus on the verifier in Fig. 1.4. Considering the house example, the
verifier would be an engineer using techniques based on the laws of physics to
verify properties of the house. Naturally, we would like a way to do that in the
software world as well.

In order to verify whether a formal model satisfies one or more properties,
we use an analysis method. Basically, analysis methods fall into two categories:
static analysis and dynamic analysis. Static analysis only looks at the descrip-
tion of the model whereas dynamic analysis also looks at the behaviour of the
model. In the case of analysis of the network protocol described in the previ-
ous section, static analysis would only look at the model in Fig. 1.5, whereas
dynamic analysis would also look at the behaviour of the model. In this Sect.
we will first look at static analysis and then turn to dynamic analysis.

1.3.1 Static Analysis

Static analysis is well-known from compilers. Compilers perform static anal-
ysis to generate more efficient programs and to check for errors that may oc-
cur in programs. Static analysis is performed when the program is compiles,
whereas dynamic analysis as described in the next section is performed on
run-time. As an example, the Java language specification [62] cites that local
variables should be definitely assigned1 a value before they are used [62, Chap.
16]. In both methods in Fig. 1.6, we are interested in checking whether the
variable y is definitely assigned a value before it is read. The variable is as-
signed a value in lines 4 and 11 and read in lines 5 and 12. The only difference
between the two problems is that the assignment in line 10 is dependent on
the evaluation of the boolean expression x == x. Thus, the method definitelyAs-
signed from Fig. 1.6 is allowed whereas subtlyAssigned is not, even though the
condition of the if statement in line 10 would always be true. The property
we actually want to check is that all variables have been assigned before they
are read, but it is impossible to check this property, so we instead check the
simpler property that all variables must definitely be assigned, thereby dis-
carding subtlyAssigned even though it actually satisfies the desired property.
Rice’s theorem [146] states that any non-trivial property of the behaviour of
programs cannot be checked automatically. Here trivial properties are proper-
ties that either hold for all programs or for no programs at all. Due to this prop-
erty we have to translate properties stating something about the behaviour of
programs into stronger properties stating something about the program. This
is the strongest caveat of static analysis, as it is not always possible to find a
stronger requirement that does not discard important programs.

Hoare logic [70] is a classical technique for more advanced static analy-
sis. The idea of Hoare logic is to annotate each statement of a program with
pre- and post-conditions. Pre-conditions of one statement must follow logically
from the post-condition of the previous statement. Proof rules for each kind
of statement makes is possible to prove post-conditions from pre-conditions.
Hoare logic makes it possible to state and prove properties, such as correct-
ness of algorithms. The main difficulty of using Hoare logic is that sufficiently
strong pre-conditions must be chosen manually in order to prove the desired
post-conditions.

1The specification of course defines this more precisely. The gist of the definition is that on all
traces, i.e., where both the then and else cases of an if-statement are considered, all variables must
be assigned before they are read.
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1 public class Assignments {
2 public int definitelyAssigned(int x) {
3 int y;
4 y = x * 2;
5 return y;
6 }
7

8 public int subtlyAssigned(int x) {
9 int y;

10 if (x == x)
11 y = x * 2;
12 return y;
13 }
14 }

Figure 1.6: Two Java methods. One is accepted by the compiler while the other
is not. Neither contain any errors.

While Hoare logic requires ingenuity to come up with the correct pre- and
post-conditions, a simpler variant, namely types, have become so common most
programmers use them without ever really thinking about them. Types of vari-
ables are statements that the values assigned to a variable always belong to a
certain type. Consider again the methods in Fig. 1.6. How do we know that the
statement y = x * 2 always makes sense? What if x contains the string value
”horse”? ”horse” * 2 certainly makes no sense. We know that the statement
always make sense, because we have declared that the parameter x must be of
type int, i.e., that it must always contain integers. Thus, whenever we use x,
we know that we use an integer, so x * 2 is always successful, as multiplication
is defined on integers. In addition to requiring properties of our parameter, we
also promise that we always return an integer from both methods. We know
that this is true, because the only value returned from either method is y (lines
5 and 12), and we have declared that y is of type integer, which this is checked
whenever we assign values to y, such as in y = x * 2. The type system also
prevents us from making errors like calling definitelyAssigned(”horse”). In Java
we must explicitly state the types of variables, but it is also possible to make
a strongly typed programming language even without this requirement, such
as Standard ML (SML) [159] or OCaml [108]. Instead of requiring the user
to explicitly state the types of all variables, they can be automatically inferred
from how the variables are used and consistency of the use is checked.

Type systems can also be used to check properties of certain modelling lan-
guages, e.g., the ambient calculus [17]. The ambient calculus consists of am-
bients, which are located inside each other. Ambients can move in and out
of each other, dissolve neighbour ambients, and communicate with neighbour
ambients. A problem of the ambient calculus is that it is possible to send both
ambients and operations over channels. This means that we may arrive at a
situation where we receive an ambient on a channel and try to execute it, as-
suming it is a operation, or we receive an operation and try to move inside it.
Such nonsense uses of channels can be avoided if we are careful, but we can
also devise a type system which checks that do not make such errors. In [15]
Cardelli et al. devise three type systems for the ambient calculus, among those,
one which checks that nonsense use of data received over channels does not
happen. Another type system from [15] checks whether it is possible for am-
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bients with a certain name to dissolve ambients with another name (which
can be bad if, e.g., it is possible to send two packets to a remote computer and
one packet contains code which is able to open the other packet to unveil a
virus). The full result of [15] is a type system, which, in addition to checking he
aforementioned two properties, also checks whether ambients with a certain
name are able to enter ambients with another name, which can, e.g., be used
to check the effectiveness of firewalls (if malicious code is able to enter through
the firewall it is not effective). Ambients need not be explicitly typed, much
like how values do not need to be typed in SML, but any process that can be
correctly typed exhibit the desired behaviour at run-time. Type systems need
to be developed and proved correct for each kind of property we would like to
check, and are therefore not that applicable for proving arbitrary properties,
but useful for guaranteeing absence of a certain kind of errors. Furthermore,
type systems are useful when translating from one formalism to another using
a translation inductive in the structure of the source formalism. By explicitly
assigning types to the result of the translation, we can inductively prove ab-
sence of a certain kind of errors (the kind guaranteed by the type system) in all
translated models.

Type systems are a special case of invariants. Invariants are properties that
must always hold during the entire execution of a program or formal model.
Type systems are invariants stating that a given variable always contains a
value from a given set or that something sent over a given channel is always
a channel, and Hoare logic uses invariants in loops. Of particular interest
are invariants that can proven solely by looking at the program or the for-
mal model. Coloured Petri nets also allow the specification of invariants—in
fact two dual kinds of invariants: transition invariants and place invariants.
Transition invariants state that the effect of executing a certain multi-set of
transitions (provided there are enough tokens initially) is the same as execut-
ing no transitions at all. In Fig. 1.5(a) the effect of executing the transition
Send Data{id = 1, data = ”Formal”} is adding one token to Network 1 and the
effect of Drop{id = 1, data = ”Formal”} is the exact opposite. Thus we have a
transition invariant 1‘Send Data{id = 1, data = ”Formal”} ++ 1‘Drop{id = 1, data
= ”Formal”} (using the multi-set notation of CPN Tools). A place invariant is
a set of weight-functions, which, when applied to the tokens available on all
places, always yields the same value. In Fig. 1.5(a), if we map any integer to
1‘0 on Send ID and Receive ID and all multi-sets of tokens on other places into
the empty multi-set, we get an invariant, as this always yields 2‘0. The weight
functions should be linear in the number of tokens, and can map into any do-
main desired. Invariants of CP-nets are not really that useful for analysis,
as they must be interpreted manually depending on the model. Furthermore,
calculating invariants requires calculation of inverse functions of the functions
appearing in the arc-expressions, which is not possible for CP-nets as the func-
tions appearing in the arc-expressions can be arbitrary, making the calculation
of invariants uncomputable. Work on automatically checking invariants for
CP-nets has been implemented and shown to work on a small set of exam-
ples by Toksvig in [158]. Invariants are more interesting for a simpler kind
of Petri nets, namely Place-transition Petri nets (PT-nets) [36]. PT-nets can be
considered as a simplified version of coloured Petri nets, but actually predates
coloured Petri nets. PT-nets are like coloured Petri nets except that all tokens
are equal—the type of all places must be UNIT = {•} (written () for technical
reasons) and all arc expressions must be integers, signifying how many tokens
are moved from each place. A PT-net version of the network protocol from
Fig. 1.5 is shown in Fig. 1.7. The protocol in Fig. 1.7 is only able to transmit
a single packet, but otherwise behave like the coloured Petri net version. All
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Figure 1.7: A simplified version of the network protocol from Fig. 1.7 created
as a PT-net.

places now have type UNIT and the values of the tokens have been removed.
As no variables exist on any arcs, we no longer have to specify the variables
when discussing enabling. The transition invariant 1‘Send Data ++ 1‘Drop is
preserved. The advantage of considering PT-nets when calculating invariants
is that we only need to compute the inverse of linear functions on integers,
which is computable.

As mentioned, due to Rice’s theorem, it is not possible to answer questions
about a model’s behaviour (at least models described using a Turing Com-
plete [11] modelling language such as CP-nets) or a programs execution by
only looking at the model or program itself. For debugging it is not a prob-
lem that we are unable to give exact answers, as we are often satisfied with
being told about potential errors or proving absence of simple errors, explain-
ing the success of static analysis, which gives a sound answer, meaning that
if the analysis states that no error exists, then no error exists (of the kind we
check). Static analysis is not complete, though, so if static analysis discovers
a problem, this does not necessarily mean that there really is an error. Some
properties are very difficult to determine using static analysis at a level fine
grained enough to be really useful, however. Such properties include whether
allocated memory is always freed exactly once, and whether buffers can over-
or under-flow. When we want to ensure that some run-time property holds, an
approximate answer may not be enough. The idea of dynamic analysis methods
is to explore the behaviour of the system during run-time.

1.3.2 Dynamic Analysis

The simplest way to check the run-time (dynamic) behaviour of a system is to
test it, i.e., execute the system a number of times and manually or automati-
cally check that the behaviour corresponds to the desired behaviour. Tests can
be written manually or created automatically [45] by a computer tool. When
dealing with models, we usually refer to the execution of the model as a simu-
lation of the model. Tests makes it possible to unveil errors that are difficult
to find with static analysis, but do not ensure absence of errors. In order to
ensure absence of errors, we need to ensure that our tests cover all possible
execution paths. In order to do that, we build a reachability graph (also known
as a state space). A reachability graph is a directed labelled graph, where the
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Figure 1.8: A version of the simple network protocol from Fig. 1.5 with a bound
on the number of possible outstanding packets.

nodes correspond to states of the model and a labelled arc from one node to an-
other, signify that it is possible to go from the state represented by the source
to the state represented by the destination using the transition (and, in the
case of CP-nets, the binding) corresponding to the label of the arc. If we have
the reachability graph available, we can check all properties we can think of.
The problem of this method is that it is difficult to construct the reachability
graph, either because the reachability graph is very large or because it is infi-
nite. As an example in the case of the model in Fig. 1.5, the reachability graph
is infinite, as we can just keep executing the transition Send Data{id = 1, data
= ”Formal”}, producing an arbitrary number of tokens on Network 1, producing
a new state for each number of tokens on Network 1. If we limit the number of
tokens we can put on Network 1 and Network 2, the reachability graph becomes
finite, however. The modified model can be seen in Fig. 1.8. The change is that
we have added a place Limit, which initially contains two uncoloured tokens.
Whenever we add a token to Network 1 or Network 2 we remove a token from
Limit and vice versa. In that way we ensure that there is at most two tokens
simultaneously on Network 1 and Network 2. Having made this change, we ob-
tain the reachability graph in Fig. 1.9. The red node is the initial state and the
green node is the only state with no successor states. The detailed specification
of a state, the state descriptor, is written inside the node. Each state is repre-
sented by the value of the token on the Send ID place, the sequence numbers of
the packets in Network 1, the number of tokens available on Limit, the sequence
numbers of the packets on In Buffer, the value of the token on Receive ID, and
the sequence numbers of the packets on Network 2. The transitions are rep-
resented by an abbreviated version of their name and the sequence number of
the packet being processed. Using this reachability graph, we can, e.g., see that
packets are always received in-order, regardless of how packets are lost. We see
this by observing that on all states of Fig. 1.9 the value of the In Buffer is either
“” (no tokens), “1” or “1; 2”. As the tokens are shown in the order the packets
with the corresponding packets have arrived, we see that we never encounter
the situation “2; 1” or “2”, where the packets are received out of order.

To alleviate the problem that the number of states is very large or infinite,
also known as the state explosion problem [161], we can do several different
things. One idea is to store the reachability graph in a more efficient way or to
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Figure 1.9: The reachability graph of the simple network protocol in Fig. 1.8.

only store enough information that we are later able to reconstruct the reach-
ability graph. Construction of the reachability graph can be done in two ways,
either explicitly or symbolically. Explicit reachability graph analysis explic-
itly store the reachability graph in memory, whereas symbolical reachability
graph analysis only has an implicit representation, e.g., by representing all
states as a logical formula satisfied by exactly the reachable states. For ex-
plicit reachability graph analysis, we often use a reduction technique in order
to only require as much internal memory as is available. Examples of reduc-
tion techniques are the sweep-line method [T1,25,104], which uses a notion of
progress in the model to delete states that cannot be reached again, hash com-
paction [155, 172], which does not store an actual representation of the state
descriptors, but only a hash value calculated from the state descriptor, called
a compressed state descriptor, and the ComBack method [T2], which is an ex-
tension of hash compaction solving the problem of hash collisions, which arise
when two state descriptors have the same hash value, meaning only successors
of one of the states is considered; by maintaining a spanning tree of the reach-
ability graph, it is possible to reconstruct the full state descriptors and resolve
hash collisions. Symbolic reachability graph analysis typically use, e.g., binary
decision diagrams [12] or multi-valued decision diagrams [96] to store states
efficiently.

Another approach is to only guarantee properties on traces of some finite
length. This is known as bounded model checking [8], and relies on tools that
are able to solve the SAT problem [148] for propositional logic, i.e., whether
there exists an assignment to all propositional variables of a given proposi-
tional formula, such that the formula evaluates to true. Bounded model check-
ing is also an instance of symbolic model checking, where states are repre-
sented using boolean formulae.

Another idea is to create a coverability graph [52, 97] instead of a reacha-
bility graph. This method is specific to Petri nets, but the coverability graph
is always finite and allows us to check certain interesting properties, e.g., to
find maximum number of tokens on all places. We get into more detail about
reduction techniques in Chapter 2.

1.4 Behavioural Visualisation of Formal Models

When we have created a formal model of a concurrent system like the network
protocol in Fig. 1.5, we would like to make sure that the constructed model
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Figure 1.10: The Model-View-Controller design pattern.

corresponds to the intended system using the approach in Fig. 1.3. To intro-
duce visualisations of formal models, we will first introduce the Model-View-
Controller (MVC) [100] design pattern [54], which is the foundation for many
approaches to visualisation of formal models.

1.4.1 The Model-View-Controller Design Pattern

A design pattern [54] is a recipe for how to do a certain task in a programming
language. The Model-View-Controller (MVC) [100] design pattern is a recipe
on how to create graphical user interfaces that are able to manipulate a data
structure within the computer. The data structure may represent, e.g., a text
document or the organisation of a company. When using the MVC design pat-
tern, the data structure we wish to manipulate is called the model (not to be
confused with formal models as discussed previously). The user interface the
user see is called the view, and the code able to cause changes to the model
is called the controller. In Fig. 1.10 we see how the three parts of the system
interact. When a user wishes to create a change in the model, an action in the
user interface, i.e., the view, is triggered. An example of this is when a button
is clicked or an item is selected from a menu. This causes the view to invoke
the corresponding function in the controller. The controller then changes the
model accordingly, e.g., removes a line of text or promotes a salesman to man-
ager. When the model is changed, it alerts the view, which observes the model
and updates itself accordingly. This gives the user the impression that the de-
sired update was performed in the user interface and that work is done on the
graphical view of the model rather than on the underlying model itself.

One important consequence of using the MVC design pattern is that it is
possible to have more than one view for each model. When a change is made
in one view, all other views are updated as well. This happens because the
model alerts all views whenever a change occurs. As an example, consider the
interaction depicted in Fig. 1.11. Here two views, View 1 and View 2, are asso-
ciated with a single model. The figure shows that a user initiates an action in
View 1. This causes the view to invoke the corresponding code in the controller.
The controller then changes the model accordingly. The model then alerts both
views, which causes them to observe the model anew. Depending on the imple-
mentation, the model may alert all views before any of them update themselves
according to the model, or each alert may be immediately followed by an up-
date. In Fig. 1.11 we assume that all alerts happen before any observations.
The views can show the same or they can show different aspects of the model.
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Figure 1.11: How two views associated with the same model are updated.

Figure 1.12: Screen-shot from the Eclipse Java editor.

Consider the screen-shot from Eclipse [41] in Fig. 1.12. Eclipse is a tool for
editing Java programs. Here we see five different views on the class Place from
a coloured Petri nets editor. At the upper right we see the actual code of the
class, and at the lower right we only see the embedded documentation of the
constructor of the class. At the lower left we see an overview of the class, and
at the upper left we see a partial overview of the class hierarchy including the
class Place. Finally, we can see a tool-tip near the mouse in the middle of the
image, which shows an abbreviated version of the documentation for the item
under the mouse. All of these views are different views of the same model and
we see that they show different details about the model. Some show (nearly)
all details and some show very limited details about the model, but whenever
a change is made to one of the views, e.g., if the class is modified in the upper
right window, all the views are updated automatically.

We now let the formal model be the model of the MVC design pattern and
we let the visualisation be the view. The controller is usually the tool used to
simulate the formal model, but may also be integrated with the visualisation.
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1.4.2 Behavioural Visualisation of Formal Models Using
the Model-View-Controller Design Pattern

If the concurrent system we wish to develop and thus model and visualise is
a simple form-filling application, such as a business intelligence or inventory
application, a visualisation can quite easily be constructed using the idea of a
prototype [44]. A prototype is a simple implementation of a program in which
only limited functionality has been implemented, but otherwise the prototype
looks and behaves as the real implementation. In MVC terms we implement
only the view and very simplistic models and controllers. Prototypes are valu-
able as a tool for testing a user-interface before a costly construction of the
real product. The idea is that it is very easy and cheap to create a reason-
ably professional-looking user interface using a GUI-builder, such as Borland
JBuilder [90] or Microsoft Visual Studio [167]. Normally, we would then ex-
tend the purely visual prototype with simple code that make the prototype act
as expected of the real program. If we, instead of a simplistic implementation
of the model and controller, use a formal model in place of the model and the
simulation tool as controller, we get a product whose behaviour is defined by a
formal model. As the GUI is a view of the formal model, it is possible to see
the state of the formal model. Whenever the formal model’s state is updated,
the GUI is updated accordingly. By letting actions performed in the GUI corre-
spond to actions in the formal model, it is also possible to stimulate the formal
model, and it is thus possible to see and stimulate the execution of the formal
model using a standard GUI.

Some times the model is not modelling a simple form-filling application,
however. As an example, the network protocol from Sect. 1.2 is a more complex
system. It is not obvious how we should create a user-interface that allows us
to observe the behaviour of the system as a network protocol would not have
a graphical user-interface except for configuration purposes. We could, how-
ever, create a visualisation rooted in the network diagrams used to diagram
the layout of a large network, where all machines are drawn as icons and pack-
ets as coloured dots like the one in Fig. 1.13. The figure shows the sender to
the left and the receiver to the right. The cloud represents the network. The
coloured dots represent packets; green packets contain data en route from the
sender to the receiver while red dots correspond to acknowledgements en route
in the other direction. The number in the dots shows the sequence number of
the packet. Below the sender and receiver, we see counters, representing the
counters on Send ID respectively Receive ID. Currently both of these are 1. We
may be able to transmit packets by clicking on the sender. The graphics in
Fig. 1.13 is updated while packets are transmitted, e.g., to show whether pack-
ets are dropped or successfully received as well as to show the current values
of the counters. If we implement code which is able to show and maintain a
visualisation like the one in Fig. 1.13, we can use it as view, the formal model
as model and the simulation tool as controller as in the case of the GUI appli-
cation. This is an example of a domain specific visualisation, as we have used
a visualisation that is likely to be familiar to the domain expert.

In this manner we can implement a model-based prototype, which has sev-
eral advantages over a normal prototype or an implementation. As an example,
it is possible to abstract away certain implementation details. In the case of the
network protocol, we are able to ignore any operating system-specific network
access and encoding/decoding of binary data. Compared to creating a proto-
type written entirely in, e.g., Java we also obtain a formal specification of the
system we wish to implement without representing the dynamics of the pro-
tocol twice, once in the prototype and once in the formal model. The formal
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Figure 1.13: Visualisation of a simple network protocol.
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(b)

Figure 1.14: Manual construction.

model can be used for analysis or as basis for an implementation as discussed
in the next section. The use of a domain specific graphical user interface (the
visualisation) has the advantage that the design can be experimented with and
explored without having knowledge of the formal modelling language.

1.5 Relationship between Formal Model
and Implementation

Once we have constructed a formal model, we validate that it reflects the sys-
tem we want to construct using the approach shown in Fig. 1.3 and described
in Sect. 1.4. Then, we verify that the model satisfies the requirements we may
have using the method shown in Fig. 1.4 and described in Sect. 1.3. The next
step is then to actually implement the system. In this section we look at four
ways to arrive at an implementation based on a formal model.

The most straightforward way to obtain an implementation corresponding
to a formal model is to look at the formal model and the specification and man-
ually create the implementation, relying on experience to make a reasonable
translation. This approach is shown in Fig. 1.14(b). This approach corresponds
to how we would build a house from the architect’s drawings (Fig. 1.14(a) ). Ad-
vantages of this approach are that it is light-weight, easy to understand, and
easy to start using: it is easy for somebody who understands the formalism
used to describe the formal model to create the implementation. This approach
is also the one seeing the widest use, and has been described under some form
as the waterfall model [147], and the idea also underlies the widely used Ca-
pability Maturity Model (CMMI) [30]. The major disadvantages are that the
manual step is prone to human errors, and a lot of difficult decisions are hid-
den in the art of the manual translation. This approach can be used with any
reasonable formalism and any tool, as the modelling phase is only present to
clarify the specification.

An obvious way to make the approach less prone to human errors is to elim-
inate the manual step from the formal model to the implementation and let
a computer create the final system from the formal model. This can be seen
Fig. 1.15. In the real world this corresponds to building a machine that builds
houses from the architect’s drawings with no human intervention. This ap-
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Figure 1.15: Synthesis.

proach actually solves both of the problems with the manual approach. As
the step from model to the implementation is automatic, it is not possible for
humans to introduce errors in this step. Also, as we have to construct the ma-
chine constructing the implementation from the model, we cannot hide difficult
decisions. We have to find a solution to all difficult problems or the machine
will not work. This corresponds to how high-level languages translate “easy-to-
understand” programs written in high-level languages as Java or C# into lower
level byte-code, which can be executed by (virtual) machines. The problem is
that it is not obvious how this can be done without introducing limitations to
what kinds of systems can be built or making the modelling language very com-
plex. Currently, successful attempts at this method either restrict themselves
to a certain domain, e.g. workflow modelling [164] as implemented by Machado
et al. in [114], or they limit themselves to creating skeleton programs only, i.e.,
programs where only the main structure is automatically derived, and all the
details have to be filled in by humans as done by, e.g., Hauser and Koehler
in [68]. Thus the step from model to implementation is semi-automatic only.

Another approach, which is not feasible in the physical world, is to man-
ually construct the implementation and automatically derive the model from
the implementation, as shown in Fig. 1.16. Should we try finding a parallel
in the physical world, we can compare this method to creating a blueprint of a
house after it has been built by measuring the size of all rooms. This method
is intended to find errors in the implementation and builds on the fact that
comprehensive testing of the actual implementation is typically computable
infeasible, whereas testing an abstraction, a model, may be feasible. The idea
is to automatically derive a model from the implementation and verify formal
requirements on the model. If a requirement is not satisfied by the model, we
retry the exact same test in the implementation to verify if the error is repro-
ducible there. If it is, we must fix the implementation, derive a new model
and re-run the test. If the error is not reproducible in the implementation, we
must refine the model until it is no longer possible to reproduce the error in the
model. The major advantage of this method is that it really does find errors,
as can be illustrated by two example implementations: One implementation is
Holzmann and Smith’s FeaVer [51, 79], where a human assists the computer
in deriving the formal model from programs written in the C programming
language [98]. Refinement is done manually as well, if required. FeaVer has
been used to verify Lucent’s PathStarTM access server for telephony [80]. A
more recent method is to fully automatically derive the model from the pro-
gram and automatically refine the model based on automatic testing against
the implementation, as implemented in Microsoft’s SLAM [4, 152] for testing
device drivers. As device drivers run in a privileged mode in the operating
system they have the ability to crash the entire computer when failing, so cor-
rect operation is important. As can be seen from the examples, some of the
major players in the computer industry are interested in this approach as it
is very well-suited and efficient for finding errors in programs. The approach
is fairly easy to use, but it is still too time-consuming and costly to use this
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Figure 1.16: Testing using automatically generated formal models.
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Figure 1.17: Using formal models to generate tests of the implementation.

method for non-critical systems. The major disadvantage of this approach is
that it solely focuses on finding errors after the implementation has been cre-
ated, which may be much more expensive than finding and fixing the error
before implementation is even started. Another disadvantage is that the auto-
matically derived abstract model may be less efficient than a humanly derived
abstraction, making it infeasible to analyse.

The final approach to correct systems we will consider in this thesis is a
combination of all the previous methods. This approach is outlined in Fig. 1.17.
The idea is that we manually construct a model from the specification (and en-
sure that is correspond to the customer’s idea of the system using visualisations
as in Fig. 1.3). We can then verify that the model satisfies the requirements,
using the verification approach in Fig. 1.4. After all requirements have been
successfully verified, we construct the implementation from the specification
and the model (manually as in Fig. 1.14 or automatically/semi-automatically
as in Fig. 1.15). Now we automatically or semi-automatically derive tests from
the model. The tests are run on the implementation and errors in the imple-
mentation revealed during this are then fixed. This approach has a lot of the
advantages over the previous methods: it is possible to find errors early in the
construction, it is fairly easy to get started, and the tests of the implementa-
tion ensures that the number of human mistakes introduced by going from the
model to the implementation is minimised. We can check the behaviour of the
implementation against the model by simply executing the two in parallel and
check whether it is possible for the implementation to do something which is
not allowed by the model. This has, e.g., been done by Larsen et al. in UPPAAL-
TRON [107]. Of course the quality of the results is dependent on the quality of
the model, as errors in the implementation also present in the model will not
be reported, so validation of the model is still important prior to testing.

The most suitable approach depends on the situation. If all we want to do



22 Chapter 1. Introduction

is to find errors in programs which have been written, e.g., ten years ago, we
should use the approach in Fig. 1.16. If we are in a situation where an im-
plementation can automatically be synthesised from the model, we should use
the method in Fig. 1.15 and skip or significantly shorten the testing phase. If
resources are limited or the importance of the implementation is very limited,
we may use the approach in Fig. 1.14 (maybe even skip the modelling phase
and go directly from specification to the implementation) and save resources
for more critical projects. If none of the other apply, the method in Fig. 1.17
may be applicable, as it makes fewer assumptions of the system to implement.

1.6 Reading Guide

This thesis in structured as follows: In Chapter 2 we consider analysis of for-
mal models using the reachability graph method. The contribution in this area
consists of two new reduction techniques. In Chapter 3 we look at different
ways and tools to visualise the behaviour of a formal model. This chapter can
be read independently of Chapter 2. The contribution in this area consists
of the development of a tool, the BRITNeY Suite, facilitating visualisation of
formal models as well as the development of a general framework for tying vi-
sualisations to formal models, giving visualisations a formal semantics, which
makes it possible to visualise error reports from reachability graph analysis.
In Chapter 4 we summarise the first part of this thesis. Part II of the thesis
(Chapters 5—8), contains papers by the author of this thesis within the fields
of reachability graph analysis (Chapters 5 and 6) and behavioural visualisation
of formal models (Chapters 7—9).

To make it easier to distinguish papers that are part of this thesis and pa-
pers co-authored by the author of this thesis from papers authored by others,
references to papers that are part of this thesis are prefixed with a T (for the-
sis), as in [T2], references to papers that are not part of this thesis but co-
authored by the author of this thesis are prefixed with a C (for co-authored),
like [C5], whereas other papers have no prefix, e.g., [91].

1.6.1 Brief Summary of Papers

Here we give a very brief summary of the papers in Part II of this thesis. For
more extensive summaries and discussion of the papers, readers should turn
to Chapters 2 and 3.

Obtaining Memory-Efficient Reachability Graph Representations
Using the Sweep-Line Method

[T1] T. Mailund and M. Westergaard. Obtaining Memory-Efficient Reacha-
bility Graph Representations Using the Sweep-Line Method. In Proc.
of TACAS’04, volume 2988 of LNCS, pages 177–191. Springer-Verlag,
2004.

This paper extends the sweep-line method [25, 104] to allow checking proper-
ties that are more complex than invariants by generating a near-optimal repre-
sentation of a reachability graphs using the sweep-line method. The idea is to
represent states using a number and only maintain a mapping from state num-
bers to state descriptors for a limited set of states, namely the states in front
of a sweep-line, which tries to separate states that still needs exploring from
states that have already been explored and will not be encountered again. The



1.6. Reading Guide 23

method is demonstrated to use significantly less memory on examples where
there is a clear notion of progress, i.e., where there are few transitions leading
to states that have already been explored. In addition, the method performs
reasonable for examples without no clear notion of progress.

The ComBack Method—Extending Hash Compaction with
Backtracking

[T2] M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The Com-
Back Method – Extending Hash Compaction with Backtracking. In Proc.
of ATPN’07, volume 4546 of LNCS, pages 446–464. Springer-Verlag,
2007.

The idea of the ComBack method is to augment the hash compaction reduction
technique [155, 172] by maintaining a spanning tree from the initial state to
each encountered state. Hash compaction creates a compressed state descrip-
tor from the original state descriptor using a hash function. Hash collisions,
i.e., when two different state descriptors have the same compressed state de-
scriptor, makes this method incomplete. Using the ComBack method we can
use the spanning tree to translate each compressed state descriptor to all cor-
responding state descriptors, making it possible to discover hash collisions on-
the-fly. The method is demonstrated to use around 25% of the memory required
to store the reachability graph at the cost of using 100%− 1000% of the time.

The BRITNeY Suite Animation Tool

[T3] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool.
In Proc. of ICATPN’06, volume 4024 of LNCS, pages 431–440. Springer-
Verlag, 2006.

This paper describes the BRITNeY Suite visualisation tool, which makes it
possible to visualise the execution of formal models. The tool is able to inter-
act automatically with CPN Tools [C1, 33], a tool for editing and simulating
coloured Petri nets. The tool allows the use of extension plug-ins, which makes
it easy to extend the tool with new kinds of visualisations, but the tool also
comes pre-packaged with around 20 plug-ins, making it easy to get started.
The usefulness of the tool is demonstrated using two industrial case-studies.

Model-based Prototyping of an Interoperability Protocol for Mobile
Ad-hoc Networks

[T4] L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Pro-
totyping of an Interoperability Protocol for Mobile Ad-hoc Networks. In
Proc. of IFM’05, volume 3771 of LNCS, pages 266–286. Springer-Verlag,
2005.

This paper describes an industrial case study where coloured Petri nets have
been used to create a prototype of a network protocol. The prototype uses the
BRITNeY Suite for visualisation of the behaviour of the model (much like the
approach in Fig. 1.3). The prototype has been used for discussing the model
during model- and protocol-design as well as for demonstration for manage-
ment with little knowledge of formal models. The paper argues that a model-
based prototype can be much more efficient than a physical prototype, as we
are able to abstract implementation details away and we do not have to worry
about real hardware, which makes it easier to control scenarios and easier to
scale the prototype.
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A Game-theoretic Approach to Behavioural Visualisation

[T5] M. Westergaard. A Game-theoretic Approach to Behavioural Visualisa-
tion. Submitted, 2007.

A lot of different tools supporting visualisation of the behaviour of formal mod-
els exist, but they are typically designed in an ad-hoc manner, which often
means that the semantics of the visualisation is not well-defined. Furthermore,
the tools usually mainly allow simple inspection of the formal model during ex-
ecution, or require that the user spends a lot of time tying the visualisation to
the model. This paper regards visualisations as games, i.e., labelled transition
systems where the transitions are separated into controllable and uncontrol-
lable transitions. Visualisations are synchronised with models, whose seman-
tical domain also is games, such that uncontrollable transitions of the model is
synchronised with controllable transitions of the visualisation and vice versa.
The paper gives two example visualisations and provide an application, namely
visualisation of error reports of reachability graph analysis.


