
Chapter 2

Behavioural Verification by Means of

Reachability Graphs

This chapter considers the implementation of the verifier box from Fig. 1.4.
The job of the verifier is to check whether a model, denoted by M, satisfies a
given property, denoted ϕ. If M satisfies ϕ, we say that M is a model of ϕ,
and we write M |= ϕ. The task of checking whether M |= ϕ is called model
checking.

In this chapter we will introduce the basic idea behind reachability graph
analysis (also known as state space analysis) and a number of reduction tech-
niques, i.e., variations of the basic reachability graph algorithm that make
analysis possible for larger systems of certain classes of models (which class
depends on the reduction technique). We start by introducing the basic algo-
rithm for reachability graph construction in Sect. 2.1. We then turn to describ-
ing reduction techniques in general in Sect. 2.2, and the sweep-line method
[25,104] in Sect. 2.2.1 and the hash compaction reduction technique [155,172]
in Sect. 2.2.2. We give a summary of the papers [T1] and [T2] co-authored by
the author of this thesis in Sects. 2.3 and 2.4. Full versions of the papers [T1]
and [T2] can be found in Chapters 5 and 6, respectively. The paper [T1] extends
the sweep-line method to allow checking more complex properties and [T2]
makes the incomplete hash compaction reduction technique complete. We sum
up the chapter by discussing the contribution of the papers [T1] and [T2] and
provide directions for future work.

2.1 Basic Reachability Graph Analysis

To make our discussion of behavioural verification independent of the concrete
modelling formalism, we will use an abstract definition of the behaviour of
a formal model, namely a labelled transition system. A labelled transition
system captures the intuition that a formal model starts in a certain state and
progresses according to a transition relation:

Definition 2.1 (Labelled Transition System) A labelled transition sys-
tem (LTS) is a tuple, LT S = (S, T , ∆, sI), where

• S != ∅ is a set of states,

• T is a set of transitions,

• ∆ ⊆ S × T × S is the transition relation indicating successor states,

• sI ∈ S is the initial state.

25

26 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Let s, s′ ∈ S be two states and t ∈ T a transition. If (s, t, s′) ∈ ∆, then t
is said to be enabled in s and the occurrence (execution) of t in s leads to the

state s′. This is also written s
t
−→ s′. An occurrence sequence is an alternating

sequence of states si and transitions ti written s1
t1−→ s2

t2−→ s3 · · · sn
tn−→ sn+1

and satisfying si
ti−→ si+1 for 1 ≤ i ≤ n. We use →∗ to denote the transitive

and reflexive closure of ∆, i.e., s →∗ s′ if and only if there exists an occurrence

sequence s1
t1−→ s2

t2−→ s3 · · · sn
tn−→ sn+1, n ≥ 1, with s = s1 and s′ = sn+1. A state

s′ is reachable from s if and only if s →∗ s′, and reach(s) = { s′ ∈ S | s →∗ s′ }
denotes the set of states reachable from s.

We will often like to verify some invariant property, I : S → {tt, ff}, of all
states reachable from the initial state, i.e., check whether ∀s ∈ reach(sI).I(s)
holds. The most naive way to do that is by checking if it holds for the initial
state. If it does not, we know the property does not hold for all states. If the
property does hold for the initial state, we recursively check the property for all
successor states. It is evident that this algorithm does not terminate if the in-
variant holds and we can reach an infinite number of states, i.e., if |reach(sI)| =
∞ and ∀s ∈ reach(sI).I(s). Even if the number of reachable states is finite, the
algorithm will not terminate if the invariant holds and it is possible to reach
some state state from itself by a non-empty transition sequence, i.e., when
|reach(sI)| < ∞ but ∀s ∈ reach(sI).I(s) and ∃sb, s ∈ reach(sI).sb →∗ s′ → sb, as
the recursive check of successor states will eventually encounter the state sb,
and, as sb →∗ sb, loop when trying the validate the invariant for sb.

In order to overcome this problem, we build a reachability graph. A reacha-
bility graph is a directed labelled graph, where the nodes correspond to states
of the model and a labelled arc from one node to another, signify that it is pos-
sible to go from the first state to the second using the transition corresponding
to the label. Formally, the reachability graph is the directed graph (V, E) where
V = reach(sI) is the set of nodes and E = {(s, t, s′) ∈ ∆ | s, s′ ∈ V } is the set of
edges. An edge (s, t, s′) has s as source and s′ as destination and the label is
t. The reachability graph can be constructed using Algorithm 1, which makes
the recursion stack explicit as the data-structure W . The intuition is that W
contains states for which we have not yet calculated successor states whereas
V and E contains the nodes, respectively edges, of the reachability graph for
the states for which we have already calculated successor states. This algo-
rithm not only terminates as long as |reach(sI)| < ∞, it is also more efficient
than the previous algorithm, as successors are only calculated once for each
state. Using the reachability graph, we can traverse all states of V and check
the invariant property I, even if S is infinite as long as V is finite. Algorithm 1
terminates iff |reach(sI)| < ∞ and ∀s ∈ reach(sI).|{(s, t, s′) | (s, t, s′) ∈ ∆}| < ∞.
This is a dynamic property, however, and can only be decided by generating
the reachability graph (or something equivalent). To obtain a syntactic way
to decide if the reachability graph is finite, we observe that reach(sI) ⊆ S and
∀s ∈ S.{(s, t, s′) | (s, t, s′) ∈ ∆} ⊆ ∆ ⊆ S × T × S, so it is a sufficient but not
necessary condition that S and T are finite for Algorithm 1 to terminate. If a
Place-transition Petri net is bounded, i.e., if the number of tokens on all places
in all reachable states is less than some constant, the set of possible states,
S, is finite (or can be picked to be finite). If we furthermore assume that the
PT-net only has a finite number of transitions, Algorithm 1 always terminates.
Some PT-net models are bounded by design. As an example, 1-safe PT-nets
only allow transitions to be executed if it does not lead to more than one token
on any place. Initially all places contain at most one token, so the number of
tokens never exceed 1. Some PT-net models can be shown to be bounded, e.g.,
using place invariants or coverability graphs as described later. We can imple-

2.1. Basic Reachability Graph Analysis 27

ment this algorithm by representing V and E as hash tables and W using, e.g.,
a queue or a stack.

Algorithm 1 Basic reachability graph algorithm.

Require: LT S = (S, T, ∆, sI) a labelled transition system
Ensure: (V, E) the corresponding reachability graph

1: V := {sI}
2: W := {sI}
3: E := ∅
4:

5: while W != ∅ do
6: Select an s ∈ W
7: W := W \ {s}

8: for all t, s′ such that s
t
−→ s′ do

9: E := E ∪ {(s, t, s′)}
10: if s′ /∈ V then
11: V := V ∪ {s′}
12: W := W ∪ {s′}
13:

14: return (V, E)

If |reach(sI)| = ∞, Algorithm 1 will not terminate. If |reach(sI)| is finite but
very large, the algorithm may not terminate successfully. The problem that
the reachability graph can be very large or infinite for even simple models is
known as the state explosion problem [161]. The state explosion problem can
be the cause for unsuccessful execution of Algorithm 1 for several reasons. As
an example, the available memory can be exhausted causing the algorithm
to terminate prematurely or causing the operating system to start swapping
internal memory to disk, leading to vastly decreased performance of the algo-
rithm as it it ill-suited for external memory. The problem is basically line 10
of Algorithm 1, as the check whether s′ ∈ V will require access to external
memory almost every time. Another problem is that the execution may simply
take too long for the result to be interesting, e.g., if the calculation takes two
months but the space robot we verify has to launched in one month. If the
reachability graph is infinite we must use a method to represent it using only
a finite amount of memory, e.g., by representing the graph using graph gram-
mars [140], representing equivalence classes of states of the real reachability
graph [26,92], or by using a coverability graph [52,97] instead of a reachability
graph. The first two ways of representing infinite reachability graphs can be
used for any formalism, whereas the coverability graph can only be constructed
for Petri nets.

The idea of the coverability graph is based on the observation that transi-
tions of Place-transition Petri nets are monotone, i.e., that adding more tokens
do not inhibit the execution of transitions or alter the effect of executing tran-
sitions1. Thus, if we reach a state, s′, which has at least the same number of to-
kens on all places as a previously visited state, s, written s′ ≥ s, all transitions
enabled in s will also be enabled in s′ (this is the definition of monotonicity).
Thus it is possible to execute the transition sequence leading from s to s′ an
arbitrary number of times, each time producing more tokens. We can replace
the number of tokens on places in s′, which contains strictly more tokens than

1Certain extensions of PT-nets do break monotonicity, however, e.g., inhibitor arcs [21] that
checks for absence of tokens, or bounds on places that prevent adding more than a fixed number of
tokens to places.

28 Chapter 2. Behavioural Verification by Means of Reachability Graphs

in s, with infinity (∞), representing that it is possible to generate an arbitrary
number of tokens on these places. As an example, in the case of the PT-net
model of a network protocol in Fig. 1.7, we see that by executing Send Data we
reach a state where the number of tokens on all places except Network 1 are
the same as in the initial state. On Network 1 we have one more token after
executing Send Data, so we replace the number of tokens on Network 1 with ∞,
signifying that by executing Send Data an arbitrary number of times, we can
produce an arbitrary number of tokens on Network 1. The coverability graph
can be used for, e.g., determining upper bounds on the number of tokens on
each place and thus whether the PT-net is bounded, so it is possible to use the
coverability graph to determine if the reachability graph of a PT-net is finite.
The coverability graph method cannot immediately be used for CP-nets as it
is not possible to define a canonical ordering of states which makes transitions
monotone and still guarantees that the coverability graph is finite as the types
of places can be infinite.

In the rest of this chapter we will only consider finite but large reachability
graphs. We are thus interested in reduction techniques for storing reachability
graphs efficiently.

2.2 Reduction Techniques

Reduction techniques for finite reachability graphs basically fall into two cat-
egories: algorithms for explicit representation of the reachability graph and
algorithms for symbolic representation of the reachability graph. Reduction
techniques for explicit reachability graph analysis, basically fall into four cat-
egories: methods that explore only a subset of the reachability graph directed
by the verification question [42, 134, 160]; methods that use external storage
to store the set of visited states [153, 156]; methods that delete states from
memory during reachability graph exploration [25,60]; and methods that store
states in a compact manner in memory [T1, T2, 57, 76, 93]. Symbolic reach-
ability graph analysis typically use binary decision diagrams (BDD) [12] or
multi-valued decision diagrams (MDD) [96] to store states, or represent each
state of the system as a propositional formula and rely on a SAT-solver [148],
e.g., MiniSAT [43] or HyperSAT [83], to do bounded model checking [8]. We
will first take a look at some symbolic techniques and then turn to examples of
reduction techniques from each of the four categories.

Symbolic reachability graph analysis using BDDs relies on representing
each state of the system as a bit-vector. A set of bit-vectors can be efficiently
represented using a finite automaton accepting exactly the bit-vectors in the
set, and BDDs are one way to represent such automatons efficiently. BDDs
reduce the memory needed to store each state by sharing the representation
of common parts of the bit-vectors. If we cannot represent the state as a bit-
vector, e.g., in the case of PT-nets where we have no a priori bound for all places,
we can use MDDs, which are able to represent strings of integers using similar
techniques as BDDs.

The basic idea of bounded model checking is to encode all executions of the
system after executing k transitions as a boolean formula Mk. We conjunct this
with a formula, ¬ϕk, which states that a property ϕ does not hold after execut-
ing k transitions. If (and only if) Mk ∧¬ϕk is satisfiable, an execution of length
k which does not satisfy ϕ is found. We assume that a state of the system can
be encoded as a vector, s, consisting of n boolean variables, s[0], . . . , s[n − 1].
We let s0 be the initial state and let I(s0) be a propositional formula encoding
the initial state. We let T (si−1, si) be a formula that is satisfiable if there is a

2.2. Reduction Techniques 29

transition leading from the state si−1 to the state si. The formula Mk is then

expressed as Mk = I(s0) ∧
∧k

i=1 T (si−1, si). If we take k = 2n, we are guaran-
teed to reach all possible states, as at most 2n different states can be encoded
using n boolean variables, and after executing 2n steps we are thus guaranteed
to have reached either states with no successors or previously seen states and
therefore we have discovered a loop in the reachability graph. If we want to
model check an invariant property, I, we can take ϕk =

∨k
i=0 ¬I(si). Bounded

model checking relies on solving the problem of whether a propositional for-
mula is satisfiable. This is referred to as the SAT problem and is a well-known
NP-hard problem [55]. This means that no known algorithm can solve the
problem in time polynomial in the number of variables. There exist, however,
very efficient heuristics, and the advantage of bounded model checking is that
we check all states reachable in k steps in a single iteration. Bounded model
checking is only applicable if we can encode the state of the system as a vector
of boolean variables, which is, e.g., the case for bounded Place-transition Petri
nets when the bound is known in advance.

The main problem with symbolic model checking is that it works best if
all reachable states can be represented using a bit-vector or vector of boolean
variables of the same size. This is not the case for CP-nets, which is why we are
mainly interested in explicit reachability graph analysis. For example the CPN
model of a network protocol in Fig. 1.8 contains integers, which in principle
can grow unbounded as well as a list of packets (on In Buffer) which is also
in principle able to grow arbitrarily long. Even if a bound can be found, it
will often be very large as CPN states are often hundreds of bytes, so symbolic
model checking would need to deal with thousands of bits/boolean variables,
rendering the methods virtually useless for CP-nets.

Now let us instead consider explicit reachability graph analysis. Depending
on the property we want to check, we may not need to explore all reachable
states to be able to provide correct answers. One way to only explore a subset
of all states is to use a partial order reduction [28,136]. Partial order reduction
exploit the fact that some transitions can be executed in any order yielding
the same result. As an example, consider a state, s. If we can execute the

transitions a and b concurrently, i.e., if s
a
−→ s′

b
−→ s′′′ and s

b
−→ s′′

a
−→ s′′′. If we are

only interested in the behaviour after executing both transitions, we only need
to consider one of the two execution sequences. This allows us to check, e.g.,
whether a system has any dead-locks, i.e., states with no enabled transitions.
As the number of possible execution sequences grow exponentially as a function
of the number of concurrently enabled transitions, only exploring one (or a few)
of them yields a huge optimisation. The problem is, of course, identifying such
sets of transitions. For PT-nets, we can check if all tokens required by a set
of transitions are available by adding the number of tokens consumed for all
transitions of the set. If all tokens are available the transitions can be executed
concurrently. For non-monotone formalisms the analysis is more complex, as
we also have to check whether the execution of one of the transitions in the set
can inhibit the enabling of some of the others. There are numerous variants
of partial order reductions, such as ample sets [134, 135], persistent sets and
sleep sets [58, 59, 171], and stubborn sets [160]. Another way to only explore
parts of the reachability graph is to use a weight function, which assigns higher
weight to transitions that are likely to lead to states violating the property
we wish to check. This is known as directed model checking [42], and such
weight functions can either be provided manually by the user or, in some cases,
computed automatically.

30 Chapter 2. Behavioural Verification by Means of Reachability Graphs

External memory algorithms [153, 156] for reachability graph analysis ba-
sically store states on disk sorted according to some ordering of the states.
Storing states and checking whether states are already stored are batched,
minimising the number of disk accesses required. In addition, an in-memory
cache is used to further minimise the number of disk accesses required. While
such algorithms are interesting, computers today often have enough memory
available, counting in gibi-bytes on laptop computers to hundreds of gibi-bytes
on large servers, that by just representing states more efficiently we can anal-
yse systems for which filling internal memory would take weeks or months, in
particular when analysing CP-nets, where calculating enabled transitions can
be very time-consuming.

Among methods which delete states from memory during exploration are
the state caching [60] and sweep-line methods [25, 104]. State caching basi-
cally performs a depth-first traversal of the reachability graph. Rather than
storing all states of the reachability graph, only the states on the depth-first
stack are guaranteed to be stored. If enabled transitions can be processed in
a deterministic way, this will terminate whenever the reachability graph is fi-
nite. It is possible that the successors of certain states are explored more than
once, however. This happens for states with more than one transition leading

to them, i.e., if s′
a
−→ s and s′′

b
−→ s for s′, s′′ ∈ reach(sI) and (s′, a) != (s′′, b). In

that case s will be explored more than once. In order to minimise the number of
re-explorations, some states are cached in memory, even if they are not on the
depth-first stack. Several methods [19, 40, 56] aims at finding clever ways to
decide which states should be kept in memory and which should be discarded.
Another method for intelligently removing states from memory during analysis
is the sweep-line method, which uses a specification to detect when a state will
not be encountered again. We go into more detail about the sweep-line method
in Sect. 2.2.1, as it is needed to understand the summary of the paper [T1] in
Sect. 2.3.

Several algorithms for storing states more efficiently exist, some are depen-
dent on the formalism used and some are independent of the formalism used.
For CP-nets, we can use an approach similar to BDDs for storing states, namely
storing states in a tree sharing common parts of the state [24]. The idea is to
observe that CP-nets are split into places and that the tokens on one place can
also be encountered on other places or on the same place in other states. Fur-
thermore the effects of transitions on CP-nets are usually local, meaning that
only a few places are modified when an enabled transition is executed. By stor-
ing identical marking of places (multi-sets of values) only once, we can thus
obtain a reduction in the memory required to store the state of a CPN model.
The representation of a state just refer to the correct marking of each place.
This can be used with the network protocol to share the markings of Send
ID and Receive ID as well as the empty markings of the two network places.
Furthermore, CP-nets are extended with a simple module concept, and the lo-
cality of transitions means that often only markings of places in one or a few
modules are changed. By furthermore representing the state of each module
separately, it is possible to re-use the representation of all unchanged modules.
This method is implemented in CPN Tools [C1, 33]. Bit-state hashing [76] is a
formalism-independent approach to storing states efficiently. Bit-state hashing
uses a hash function to compute a hash value for each state. This hash value is
then used as index in a bit-array (modulo the size of the array) to set a bit in-
dicating a state with that hash value has been encountered. If multiple states
have same hash value this will lead to a hash collision, i.e., two different states
are considered the same because they have the same hash value. To reduce this

2.2. Reduction Techniques 31

problem one can use more than one hash function or a linear combination of
two or more independent hash functions using double hashing [38]. Hash com-
paction [155,172], like bit-state hashing, applies a hash-function to each state.
Instead of using the hash value as index in an array, the hash value itself is
stored. Hash-compaction will be discussed in further detail in Sect. 2.2.2, as
the ComBack method described in the summary of the paper [T2] in Sect. 2.4
builds on hash compaction.

2.2.1 The Sweep-Line Method

The sweep-line method [25, 104] introduced by Christensen, Kristensen, and
Mailund is an example of a method that deletes states during the analysis.
The idea is to introduce a progress measure assigning to each state a progress
value, ψ : S → N. In fact, the progress measure can assign progress values
from any partially ordered set, but for simplicity we will here assume that we
use integers as progress values. In the basic sweep-line method from [25] the
idea is to require that if s −→ s′ then ψ(s) ≤ ψ(s′). The progress measure is
thus a syntactical way to recognise whether a state s′ is reachable from s (if
ψ(s′) < ψ(s) it is not). In the network protocol example from Fig. 1.8, we can
let the progress value of each state be the sum of the Send ID and Receive ID
counters. In Fig. 2.1 we have written the progress value of each state as a
large number to the upper left of each state. Each state is represented by the
value of the token on the Send ID place, the sequence numbers of the packets
in Network 1, the number of tokens available on Limit, the sequence numbers of
the packets on In Buffer, the value of the token on Receive ID, and the sequence
numbers of the packets on Network 2. The initial state is marked by a red
background. The progress value of each state is thus the sum of the numbers
next to Send ID and Receive ID. Transitions are represented by an abbreviated
version of their name and the sequence number of the packet being processed.
We note that in this case s −→ s′ implies ψ(s) ≤ ψ(s′) for all reachable states.
We explore the reachability graph by always picking states with the lowest
progress values first. This means that we can safely delete states with lower
progress values because of the contraposition of the requirement for a progress
measure, namely that if ψ(s) < ψ(s′) then ¬s −→ s′, which can be extended to
that if ψ(s) < ψ(s′) then ¬s →∗ s′. Conceptually, the progress measure defines a
sweep-line, so that states behind the sweep-line have all been processed and we
know that none of the currently unexplored states will have transitions leading
to states behind the sweep-line, so they can safely be removed from memory.
In Fig. 2.1 the thick arrow below the states shows the direction we explore the
reachability graph. If we draw a vertical line, like the one between the states
with progress values 3 and 4, we notice that at no point do transitions cross
the sweep-line from right to left (except that states with progress measure 4
use 2 columns for easier display). The basic sweep-line algorithm is given in
Algorithm 2. The changes from Algorithm 1 is that we in line 6 select one
of the states with the smallest progress value rather than an arbitrary state,
we remove states from V with lower progress measure than any state in W
in line 13, and we remove any edges that are connected to states that have
been removed in line 14. The algorithm can be implemented by representing
W using a priority queue with ψ as the priority function. Garbage collection
can either be done each time we select a state s in line 6 with a higher progress
value than in the previous iteration or every, say, 1000th iteration depending
on how V is implemented. If we create a double representation of V using a
hash table and a priority queue with ϕ as priority, we can perform garbage
collection each time we increase the progress value without an unreasonable

32 Chapter 2. Behavioural Verification by Means of Reachability Graphs

"

Figure 2.1: The reachability graph of the network protocol with progress values
assigned to each state and a sweep-line drawn between states with progress
values 3 and 4.

penalty in time. If V is just represented as a has table, how often we do garbage
collection needs to be balanced between the cost of traversing all of V against
the additional memory required to store additional states that can safely be
garbage collected.

Algorithm 2 The basic sweep-line method for reachability graph traversal.

Require:
LT S = (S, T, ∆, sI) a labelled transition system,
ψ : S → N a progress measure

1: V := {sI}
2: W := {sI}
3: E := ∅
4:

5: while W != ∅ do
6: Select an s ∈ W s.t. ∀s′ ∈ W.ψ(s′) ≥ ψ(s)
7: W := W \ {s}

8: for all t, s′ such that s
t
−→ s′ do

9: E := E ∪ {(s, t, s′)}
10: if s′ /∈ V then
11: V := V ∪ {s′}
12: W := W ∪ {s′}
13: V := {s ∈ V | ∃s′ ∈ W.ψ(s′) ≤ ψ(s)}
14: E := {(s, t, s′) ∈ E | s, s′ ∈ V }
15:

16: return (V, E)

Unfortunately the property that s −→ s′ =⇒ ψ(s) ≤ ψ(s′), i.e., that the
progress measure is monotone does not hold for many interesting systems, such
as reactive systems, unless we choose a trivial progress measure assigning the
same progress value to all reachable states. The trivial progress measure does
not yield any reduction in the number of states stored. To overcome this, the
sweep-line method has been extended by Kristensen and Mailund in [104] to
also handle systems where we may have s −→ s′ ∧ ψ(s) > ψ(s′). Edges satisfying

2.2. Reduction Techniques 33

this property are called regress edges. By traversing the reachability graph
multiple times, each traversal called a sweep, the sweep-line method is able to
cope with regress edges. The idea is to start from the initial state in the first
sweep and in all the following sweeps use the destinations of regress edges
found in the previous sweep as starting points. Furthermore, we never remove
destinations of regress edges from memory. The major advantage of the sweep-
line method is that if the progress measure is good, i.e., if it separates the
reachable states into many equivalence classes and yields few regress edges,
only a fraction of the reachable states are kept in memory at any time. How
to find good progress measures are the topic of much research. As an example
Schmidt [151] use transition invariants of PT-nets to automatically synthesise
efficient progress measures, and Vanit-Anunchai, Billington, and Gallash try
to assist the user in manually obtaining good progress measures by counting
the number of states in each class of states with the same progress value [165].

2.2.2 Hash Compaction

Hash compaction [155,172] introduced by Wolper and Leroy uses a hash func-
tion, H : S → {0, 1}w, to compress states to w bits before they are stored. As
an example, in the network protocol in Fig. 1.8, to represent the state of the
system, we would need 12 integers to store each state of the system (one for
Send ID, Receive ID, and Limit, one to indicate how many packets and two to
specify which packets are on either of Network 1, Network 2, and In Buffer), us-
ing 48 bytes assuming that 32 bits are used to represent each integer. By using
a hash function generating 32 bit hash values, we would only use 32 bits or
4 bytes to store each state. The algorithm for reachability graph analysis us-
ing hash compaction is the same as the algorithm for basic reachability graph
analysis, namely Algorithm 1. The only difference is that the checks in line 10
and the adding of nodes in line 11 are implemented in a different way—this
actually holds for any algorithm which implements a more efficient state rep-
resentation. For hash compaction we would check whether H(s) /∈ V (in line
10) and replace line 11 by V := V ∪ {H(s′)}.

The major caveat of hash compaction is that hash collisions may lead to not
exploring all reachable states, as we may incorrectly conclude that a state s′

has already been visited if we have visited a state s, whose compressed state
descriptor H(s) is equal to the compressed state descriptor of s′, H(s′). Say we
have a hash function assigning hash values h1–h15 to the states of the network
protocol. In Fig. 2.2(a) we have written the hash values assigned to each state
to the upper left of the states. If we assume that the state marked with a
big A inside is discovered before the state marked B, we will believe we have
already seen state B, and not process it further, so the state C will never be
discovered. In fact, the reachability graph as explored using hash compaction
will look like the one in Fig. 2.2(b). If we consider it an error to have received
and acknowledged all packets successfully, yet still have an outstanding copy
of the first packet, analysis using hash compaction would (in this case) not
discover the error as state C is not explored. The hash compaction method
can be improved by using more than one hash function, but the basic problem
persists, namely that the method is incomplete in general. In [T2] we introduce
the ComBack method, which improves hash compaction by adding a means to
discover hash collisions on-the-fly during the traversal, making the method
complete as well as sound.

34 Chapter 2. Behavioural Verification by Means of Reachability Graphs

(a)

(b)

Figure 2.2: Reachability graphs for the network protocol as seen when using
hash compaction.

2.3 Obtaining Memory-Efficient Reachability
Graph Representations Using the
Sweep-Line Method [T1]

The major disadvantage of the sweep-line method is that at no time during
exploration do we have a complete representation of the entire reachability
graph in memory (unless we use the trivial progress measure assigning the
same progress value to all reachable states, in which case the method yields no
optimisation), so it is only possible to decide invariant properties. If we want
to check more complex properties, such as liveness properties using Linear
Temporal Logic (LTL), we will need a representation of the reachability graph
in memory or the ability to perform depth-first traversal of the reachability
graph as LTL can be checked by calculating strongly connected components of
the reachability graph using, e.g., Tarjan’s algorithm [157], or on-the-fly us-
ing nested depth-first traversal [74] of the reachability graph as described by
Holzmann. Neither of these methods are immediately possible in combination
with the sweep-line method. Tarjan’s algorithm cannot be used as it requires
that we have a representation of the reachability graph in memory (or that we
are able to generate the graph in a depth-first manner), and nested depth-first

2.3. Memory-Efficient Reachability Graph Representations 35

traversal of the graph is not usable as the sweep-line imposes a certain order
of traversal depending on the reachability graph in order to perform well. If
we use the basic sweep-line method it is possible to check LTL as all states in a
strongly connected component will need to have the same progress value. The
basic sweep-line method yields no optimisation for reactive systems, however,
and it may often be possible to devise a better progress measure if we allow a
few regress edges. Our paper [T1] uses the sweep-line method to construct a
near memory-optimal representation of the reachability graph, so we can use
either Tarjan’s algorithm or nested depth-first traversal to check, e.g., liveness
properties.

The most efficient representation of |S| states use 0log2 |S|1 bits to store each
state2. Often the encoding actually used is not even this efficient, so even more
than the required 0log2 |S|1 bits are used to store each state. In the network
protocol example, we would use 48 bytes (to represent 12 integers) or 384 bits
to store each state. Only 0log2 |reach(sI)|1 bits are actually needed to distinguish
between the |reach(sI)| reachable states, however. The idea of [T1] is that the
number of reachable states is often much smaller than the number of syntac-
tically possible states, |reach(sI)| << |S|, so we map representations of states
from S (the full state descriptors) into bit-vectors of size 0log2 |reach(sI)|1 (the
condensed representation) in a way so that we can later analyse the reachabil-
ity graph. In the network protocol we only need to use 0log2 161 = 4 bits for each
state, using only around 1% of the memory used for our naive representation
of each state. This representation is realised by representing each reachable
state as a number 0, . . . , |reach(sI)|− 1, and using a standard successor-list rep-
resentation of the reachability graph. Such numbers have no relation to the
full state descriptor, so we need to keep the full state descriptors as long as
needed to recognise previously seen states. In Fig. 2.3(a) we see the reachabil-
ity graph of the network protocol in Fig. 1.8. We have assigned to all states a
state number, written to the upper right of the state. A successor-list represen-
tation of the reachability graph can be seen in Fig. 2.3(b). For each node we
store a pointer to a list of all successors. The list is preceded by the number
of successors, and contains a list of pairs with the transition and the number
of the state it leads to. As an example, we can see that the state with number
1 has 3 successors. One successor is reached by executing Drop 1 and leads
to state number 0, and the other successors are reached by executing Send 1
leading to state number 2 respectively executing Receive 1 to state number 3.

If we assume that the transition relation is deterministic, i.e., if s
t
−→ s′

and s
t
−→ s′′ then s′ = s′′, this structure can be traversed using Algorithm 3.

The idea is to traverse the graph according to the condensed representation
(the numbers), and calculate the full state descriptors during traversal us-
ing the transition information. We use the fact that the transition relation
is deterministic to calculate the successors in line 10 of the algorithm. It is
easy to change Algorithm 3 to check Computation Tree Logic (CTL) as in [27,
Sect. 4.1] by adding a table of sub-expressions of the formula to check, indexed
by 0, . . . , 0log2 |reach(sI)|1 − 1 so it is possible to calculate a fix-point of satis-
fied formulae in each state. We can also extend the algorithm to use nested
depth-first search [74], so it can be adapted to check Linear Temporal Logic
(LTL).

One problem is, of course, to recognise when a full state descriptor is no
longer needed, i.e., when we will never encounter it again. We use the sweep-
line to delete full state descriptors from memory when they are no longer
needed. Another problem is that when we start the generation we do not know

2Assuming that |S| < ∞; if |S| = ∞ we would use a variable-length encoding.

36 Chapter 2. Behavioural Verification by Means of Reachability Graphs

(a)

(b)

(c)

Figure 2.3: The reachability graph of the network protocol with progress values
assigned (a) and two successor-list representations of the graph (b) and (c).

|reach(sI)|, so we do not know how many bits to use for each state. To circum-
vent this problem, we simply use as many bits as required to store all succes-
sors (which is known at the time we store successors) and store this length as
well.

The algorithm works by defining a function idxM : S → {0, . . . , |reach(sI)| −
1}, mapping full state descriptors to state numbers. This function can, e.g., be
implemented as a hash table. Whenever we encounter a new state we assign
it a new state number and add it to idxM . Consider, e.g., Fig. 2.3(a). If we are
exploring state 1 and the state 0 is already in idxM , we will encounter two new
states, which we assign numbers 2 and 3. As we assign numbers to states when
they are first discovered, we will always know the maximum state number of
all successors when processing a state. In the case of state 1, this number is 3,
so by using 0log2 31 = 2 bits, we can store all successors of state 1. The structure
in Fig. 2.3(c) shows how we can represent the reachability graph by extending
the header to also include how many bits are used to store each successor state.
As an example we see that state number 1 has 3 successors, each represented
using 2 bits. One of the states is reached by the transition Drop 0 and has
number 0. When we have processed state 2 and move on to state 3, we notice

2.4. The ComBack Method—Extending Hash Compaction 37

Algorithm 3 Depth-first traversal of the condensed reachability graph

Require: E a successor-list representation of a reachability graph
1: V := ∅
2: DEPTHFIRSTTRAVERSAL(0, sI)
3:

4: proc DEPTHFIRSTTRAVERSAL(i, s) is
5: if i ∈ V then
6: return
7: {analyse s here}
8: V := V ∪ {i}
9: for all (t, i′) in E[i] do

10: Let s′ be such that s
t
−→ s′

11: DEPTHFIRSTTRAVERSAL(i′, s′)

that there is no need to store the idxM mapping for states 0 to 2 as we will never
encounter them again. We know that because we can look at the reachability
graph in Fig. 2.3(a), but using the sweep-line method, the algorithm is also
able to realise that, as state 3 has progress value 4 (using the same progress
measure as in Fig. 2.1, namely the sum of Send ID and Receive ID) and the
states 0 to 2 have progress value 3. We therefore remove the mapping of the
full state descriptors of states 0–2 from idxM and proceed calculating successors
of state 3 and assigning them state numbers. If the progress measure is not
monotone, it is possible that we delete a full state descriptor from idxM before
we are done using it. This will lead to the state being assigned a new number,
so the reachability graph constructed using this algorithm may actually be
an unfolding of the original reachability graph. The unfolding is shown to be
bisimilar [124] to the original reachability graph by Mailund in [118, Chap.
13], so CTL* and in particular LTL and CTL is preserved as shown by Clarke,
Grumberg, and Peled in [27, Chap. 12]. The full algorithm can be seen in
Fig. 5.3 on page 86.

2.4 The ComBack Method—Extending Hash
Compaction with Backtracking [T2]

As can be seen in Fig. 2.2, the hash compaction reduction method may lead
to not exploring all reachable states if there exist two states, s != s′, with the
same compressed state descriptor, H(s) = H(s′), as is the case with states
A and B in Fig. 2.2(a). The ComBack method circumvents this by storing
enough information that we are able to realise that the states s and s′ are
actually different even though H(s) = H(s′). Like the method in the previ-
ously discussed paper [T1], we will represent each state as integers, in this
case 1, . . . , |reach(sI)|. Furthermore, we use a hash function H to generate com-
pressed state descriptors for each state. In Fig. 2.4(a) we have shown the reach-
ability graph of the network protocol from Fig. 1.8 and assigned each state a
number 1, . . . , |reach(sI)| and a compressed state descriptor h1, . . . , h15. Addi-
tionally, we have assigned each state a name, s1—s11, A, B, and C, to have a
brief way of referring to the full state descriptor of each state. As an example,
we see that the states A and B have the same compressed state descriptor, h12.
For the sake of the description of the method, we will assume that the transi-

tion relation given is deterministic, i.e., that if s
t
−→ s′ and s

t
−→ s′′ then s′ = s′′.

38 Chapter 2. Behavioural Verification by Means of Reachability Graphs

$

&'

'

(a)

(b) State table

(c) Backedge table

Figure 2.4: The reachability graph of the network protocol with compressed
state descriptors and state numbers (a), the state table (b) and the backedge
table (c) used to represent the reachability graph using the ComBack method.

The method can be extended to also deal with non-deterministic transition re-
lations; for more details refer to Sect. 6.5 on page 103.

The ComBack method works by storing a mapping from compressed state
descriptors to state numbers, called a state table, which maps a compressed
state descriptor into all encountered state numbers with the corresponding
compressed state descriptor. The state mapping for the reachability graph of
the network protocol can be seen in Fig. 2.4(b). Furthermore we maintain a
spanning tree from the initial state to all explored states by storing, for each
state number n′ corresponding to a state s′, the number, n of a predecessor

state s and a transition t such that s
t
−→ s′. This information is stored in a

data-structure called the backedge table. A possible backedge table for the
reachability graph of the simple network protocol can be seen in Fig. 2.4(c).
Here we see, e.g., that state number 2 can be reached from state number 1 via
the transition Send 1.

Using the backedge table it is possible to reconstruct the full state descrip-
tor for each state number. Say we want to reconstruct the full state descriptor
for the state with number 11. We look up state number 11 in the backedge

2.5. Contribution and Future Work 39

table and obtain 8, Receive 2, meaning we must take a Receive 2 transition
from the state with number 8 to reach the state with number 11. We now
look up state number 8, and get 6, Send 2. We continue and obtain (4, Ack
1), (2, Receive 1), (1, Send 1). The state with number 1 is the initial state.
We can see this as it has no backedges. Now we must execute the transition
sequence we have obtained from the initial state in the reverse order, and get

sI
Send 1
−−−−→ s1

Receive 1
−−−−−−→ s3

Ack 1
−−−−→ s5

Send 2
−−−−→ s8

Receive 2
−−−−−−→ A, which is indeed the

state with state number 11. We can thus backtrack from any given state num-
ber to the initial state and execute all the transitions stored in the backedge
table to obtain the full state descriptor corresponding to the state number.

The state table and the backedge table are created as we explore the reacha-

bility graph. Whenever we encounter a state, s′, using the transition s
t
−→ s′, we

calculate its compressed state descriptor, H(s′), and look up all state numbers
corresponding to that compressed state descriptor in the state table. If no such
state numbers exist, we just assign the state a new number and add it to the
state table and the backedge table. If there are any such state numbers in the
state table, we use the aforementioned technique to re-generate the full state
descriptors for each of the numbers. These can then be compared with the full
state descriptor of s′. If any of the full state descriptors are equal to s′, we have
already encountered s′, and do not need to proceed. Otherwise we just assign
s′ a new state number and add it to the state table and the backedge table. All
we need to know to add a state to the state table and the backedge table is the
number of a predecessor and a transition from the predecessor as well as the
highest used state number. The entire algorithm can be seen in Algorithm 5 on
page 100.

In addition to the basic algorithm, a number of variants are given in [T2].
One variant is able to also handle non-deterministic transition relations. This
variation also makes it possible to only store the number of a predecessor state
in the backedge table and omitting the transition information, yielding a mem-
ory optimisation at a cost in time. Time-saving variants include shortening of
how long we need to backtrack for each state. The lengths of backtracks depend
on the traversal policy—in the example we have used a breadth-first traversal
yielding optimal backtracks, but if we had used, e.g., depth-first traversal, the
backtracks might not be optimal, so shortening backtracks would reduce the
time required to reconstruct full state descriptors. Another time-saving variant
simply caches some full state descriptors, thus spending a little more memory
for increased performance.

2.5 Contribution and Future Work

In this chapter we have taken a look at behavioural verification of formal
models including symbolic methods and four categories of explicit reachabil-
ity graph analysis. We have in particular looked at the existing sweep-line
and hash compaction reduction techniques and how our papers have improved
upon these methods. In this section, we sum up the contributions made in this
field and provide directions for future research.

Our first presented paper, [T1], improves upon the sweep-line reduction
technique by using the sweep-line method to construct a near-optimal repre-
sentation of the reachability graph. This representation makes it possible to
use the sweep-line method to check properties that are more complex than
invariant properties, e.g., liveness properties in LTL. The algorithm is evalu-
ated on a number of examples in [T1]. Unsurprisingly, the algorithm works

40 Chapter 2. Behavioural Verification by Means of Reachability Graphs

best when the sweep-line method does, i.e., on reachability graphs with a clear
notion of progress. One such example is an extended version of the network
protocol in Fig. 1.8, where 5–10% of the memory required to construct the full
reachability graph is used, and 25–130% of the time is spent. If we consider
a model of the dining philosophers problem, it is possible to define a progress
measure which separates the reachable states into a lot of classes and only
yields few regress edges. Using the number of eating philosophers as progress
value, we will store almost all states during the construction, so the memory
used for the compact representation is overhead. Compared to the amount of
memory used for the full state descriptors, this is negligible, however, and the
only real disadvantage is the extra time is spent during construction.

Our second presented paper, [T2], makes the hash compaction reduction
technique complete by storing, in addition to a compressed state descriptor, a
spanning tree rooted in the initial state. This extra information makes it is
possible to resolve hash collisions on-the-fly by reconstructing the full state de-
scriptor when we encounter states with a compressed state descriptor already
stored. The paper compares the ComBack algorithm to other algorithms that
minimise the amount of memory used to store states, and find that the Com-
Back method naturally uses more memory than hash compaction, but on the
other hand guarantees that all reachable states are explored. The method uses
less memory than storing the full state descriptors, and uses around twice as
long time. On the other hand, thanks to the lower memory consumption, the
method is able to explore reachability graphs that are impossible to explore
using the basic algorithm.

In [49] Evangelista and Pradat-Peyre introduce an approach similar to the
ComBack method. The method also stores states as pairs of a predecessor and
a transition but, compared to the ComBack method, the compressed state de-
scriptor is not stored, and state numbers are merely inserted into a hash table,
which can lead to many more reconstructions. Furthermore, [49] has strati-
fied caching [56] built into the algorithm, which makes it less flexible unless
we first factor out the caching mechanism, as is done by the ComBack method.
In [49] stratified caching with a maximum parameter of 50 is used. This means
that a backtrack has length at most 50 and corresponds to caching 2% of the
full state descriptors, makes the algorithm use 200% − 400% of the time used
for a basic exploration of the reachability graph. The ComBack method use
a simpler caching strategy, namely inserting the mapping from compressed
state descriptors to full descriptors into a hash table that does not handle col-
lisions. Using this caching strategy we are able to obtain comparable time re-
sults using a cache of only 0.1%–1% of all the states, or approximately 20 times
smaller than the cache used in [49]. Furthermore, [49] presents the algorithm
solely as a depth-first traversal, whereas the ComBack method is presented in
a traversal-independent manner, making the ComBack method easier to com-
bine with other methods. Also, our experimental results show that breadth-
first traversal of the reachability graph may be much faster for highly reactive
systems where most of the reachability graph end up on the recursion stack.

2.5.1 Future Work

While prototype implementations of the two methods described in this chapter
have shown promising performance, neither method has been used extensively
in practise. The reason is that one of the methods, the ComBack method [T2],
has only recently been published at the time of writing. The other method, the
extended version of the sweep-line method [T1], is mainly useful for checking
more complex properties, such as liveness using Linear Temporal Logic, and

2.5. Contribution and Future Work 41

this does not have easy accessible tool support in tools supporting the algo-
rithm, making real-life applications difficult. In this section we will provide
some directions for interesting future work, including some ideas on how to
alleviate these problems.

Use the ComBack method in conjunction with other reduction
techniques

As mentioned, a strong point of the ComBack method is that it is independent
of the traversal type, making it easily adaptable to tasks such as on-the-fly
verification of LTL using nested depth-first traversal or CTL model-checking
using backwards fix-point calculation. This makes the algorithm well-suited
for analysis, and it also makes it easy to combine the algorithm with other
reduction techniques, which may impose a certain traversal order. Here it is
in particular interesting to combine the method with partial order reduction
techniques, which reduce the in-degree of nodes (as high in-degrees often oc-
cur when executing concurrent transitions), thereby reducing the number of
reconstructions required.

It is also interesting to combine the ComBack method with the sweep-line
method. As stated earlier, the sweep-line method and the method for obtain-
ing an efficient reachability graph representation described in Sect. 2.3 work
well for reachability graph with a clear notion of progress. We can call such
reachability graphs “long”, because they often consists of a few long execution
traces only. The ComBack method described in Sect. 2.4 works well for “wide”
reachability graphs where the graph consists of many short execution traces
with little interaction. The sweep-line based method only conserves memory if
the progress measure makes it possible to often remove full state descriptors,
but the method uses extra time whenever a regress edge leads to an already
discovered state because of rediscovery. The ComBack method uses long time
reconstructing already visited states, but benefits greatly from a cache map-
ping compressed state descriptors to full state descriptors. We have only ex-
perimented with very simple caching strategies, and our own research as well
as that of Evangelista and Pradat-Peyre [49] indicate that the method is very
sensitive to caching strategy in terms of how much time is spent. One way
to obtain a caching strategy that intuitively should perform well is to use the
sweep-line method to define the caching strategy, and cache full state descrip-
tors in front of the sweep-line. Another way to view this combination is that we
utilise the ComBack method to test whether destinations of regress edges lead
to new or to already discovered states during a run of the sweep-line method.
We observe that the successor-list representation of the reachability graph cre-
ated in our paper [T1] looks very similar to the backedge table of the ComBack
method (compare Fig. 2.3(c) with Fig. 2.4(c)). The successor-list representa-
tion stores successors and the backedge table stores a predecessor for each
state. Both of the tables rely on state numbers. If we extend the successor-list
of the sweep-line based method with a predecessor like in the backedge table
and introduce a state table like in the ComBack method, we are able to cope
with regress edges by, rather than just concluding that they are regress edges
and processing them in the next sweep, checking whether we have already en-
countered the state (by checking the state table and reconstructing states as
necessary), and, if the state is new, either schedule it for later processing or
process it immediately. As we use the sweep-line method to represent all full
state descriptors in front of the sweep-line, we only need to reconstruct destina-
tions of regress edges during the first sweep. As we are able to check whether
the destination of a regress edge leads back to a previously unvisited state or

42 Chapter 2. Behavioural Verification by Means of Reachability Graphs

a completely new state, we never need to reconstruct parts of the reachability
graph, which was the major caveat of the sweep-line based algorithm. The com-
bined method should therefore be able to analyse systems which only exhibit
limited progress, as regress edges no longer lead to a blowup in spent time.

Devise more usable specification language for properties of coloured
Petri nets

As mentioned, the new method described in Sect. 2.3 has not been tested ex-
tensively due to the lack of reasonable tool support. The current tool, CPN
Tools, provides provisional support for checking CTL and support for checking
LTL on-the-fly has been experimentally implemented for coloured Petri nets
in DESIGN/CPN [37] by Mikkelsen [122] and by the author of this thesis in a
model-checker implemented in the BRITNeY Suite. All of these implementa-
tions use a textual syntax for describing the temporal formulae and use Stan-
dard ML predicates applied to a representation of the state of the model as
atomic propositions. This has the disadvantage of requiring that the user is
familiar with the complexities of temporal logics and the difficulty of writing
often complex predicate functions.

Rather than inventing a new language for specifying properties, one can
also just use the modelling formalism itself to specify properties. This has
been done in SPIN [77], where properties are stated as so-called never-claims,
which is a standard process in the native PROMELA language of SPIN. If the
never-claim reaches a final state, it is considered an error. Something similar
has been proposed by Petri [139] for Petri nets. Here we add special tran-
sitions, called facts, which must never be enabled. We could do something
similar for CP-nets by introducing a module containing a place which must
never be marked and/or a transition which must never be executed. CP-nets
currently have tool support for synchronisation of modules by means of shared
places, but support can dually be added for synchronisation by means of shared
transitions. Using this it would be possible to create a module representing a
scenario which must never happen.

It is also possible to try to define atomic propositions in a simpler way. This
idea is partially inspired by Cardelli and Gordon’s ambient logic [16] where
atomic propositions are stated in a language closely resembling the language
of the ambient calculus [17]. For coloured Petri nets something similar could,
e.g., be achieved by showing the user a copy of the net/a module of the net.
Tokens can then be assigned to places of interest to signify that these tokens
must be present on the place in a state for the atomic proposition to hold. For
example, in the case of the network protocol in Fig. 1.8, we may want to check if
the token [(2, ” model”), (1, ”Formal”)] can ever be present on In Buffer, signifying
that the packets have arrived out of order.

Finally, we may want to specify temporal properties in simpler ways than
by using a logic. We can, e.g., specify temporal properties using message se-
quence charts [67] as message sequence charts basically define a partial or-
dering of events. By annotating message sequence charts with atomic propo-
sitions, which must hold between events, users would be able to easily specify
even complex temporal properties.

Create test-suite and tools for improvement of reachability graph
analysis methods

As can be seen in Table 6.1 on page 107, re-printed from [T2], a lot of experi-
ments have been run in order to validate the usefulness of the ComBack algo-

2.5. Contribution and Future Work 43

rithm. The results shown only comprise a small fraction of the total number of
experiments, and it is not desirable to have to run these experiments manually.

In [133], Pelánek state that reachability graphs basically come in three vari-
ants: random graphs, reachability graphs generated by small academic exam-
ples, and reachability graphs generated by realistic/real-life models. Graph-
theoretic properties varies for each kind of graph. Often the performance of
reduction techniques varies hugely dependent on the structural properties of
the reachability graph. For example, the ComBack method works best if the
in-degree is small so only few states are reconstructed. This demonstrates that
it is important to test methods on several different kinds of models, prefer-
ably both academic examples, like the dining philosophers, as well as real-life
models.

Furthermore, we would also like to be able to compare results of tests with
known good results and compare the execution time and memory consump-
tion as time progresses and the implementation is improved. Both to compare
different implementations of the same reduction technique and to compare dif-
ferent reduction techniques.

This implies that we would like a test-suite and supporting tools, which pro-
vide a means to automatically run several reachability graph analysis tasks
and which preferably provide a means to easily specify such tasks. The test-
suite should consist of several formal models, both simple academic examples
and real-life models. It should be possible to store results of executions, com-
pare each result to known-good values, and enable exploration of the execution
time/memory consumption for different reduction techniques and different im-
plementations.

One such test-suite is being developed within the ASCoVeCo (Advanced
State Space Methods and Computer tools for Verification of Communication
Protocols) project [3] at the University of Aarhus. The author of this thesis
participates in this project and has contributed to the development of the test-
suite and tools for running tests.

Improve memory handling

As can be seen in Table 6.1 on page 107, while the ComBack method conserves
memory, it uses significantly more than the expected limit of 5 words (20 bytes
when a machine word is 32 bits) per state (obtained from Theorem 6.1 on page
103 by using a machine word for each of the mentioned numbers). The theo-
rem does not account for memory used for the state table and backedge table,
which will in fact use 2 extra machine words for each state (if implemented as
an dynamically extensible array). The state table will also use 2 extra machine
words for each state. This yields a total of 9 machine words or 36 bytes for each
state, assuming a 32 bit architecture. Yet the best result obtained in Table 6.1
is that 82 bytes is used per state, or more than twice the expected amount of
memory required. This is primarily due to the fact that the algorithm is im-
plemented in Standard ML. While Standard ML is a very nice language for
specifying algorithms, it is not well-tailored to fine-grained control of memory
use. In particular it usually stores a pointer in addition to the data we are
interested in, doubling memory used when we primarily store machine words.
By implementing the data-structures in C++ and keeping the algorithm imple-
mentation in Standard ML, it would be possible to maintain a nice declarative
way to describe algorithms, while using a low-level language to use fine-grained
control of memory consumption.

Implementing data-structures in a low-level language would also make it
possible to implement the condensed representation of [T1] more efficiently.

44 Chapter 2. Behavioural Verification by Means of Reachability Graphs

The current implementation uses a machine word to store each state number,
even though the algorithm facilitates using only the number of bits required. A
similar trick could be done with the ComBack method from [T2] by, e.g., observ-
ing that we know that the number of bits required to store all predecessors of
state number 2n is only n as the predecessor will have a lower number (unless
we make path optimisations). This allows us to drastically reduce the amount
of memory needed to store the backedge table. We can also use Geldenhuys and
Valmari’s very tight hashing [57] to represent the state table of the ComBack
algorithm more efficiently. All of these optimisations are not feasible when the
data structures are implemented in Standard ML, as it is very expensive to
pack and unpack data in order to store data that is not word aligned in Stan-
dard ML.

Visualisation of error traces for property violations

The BRITNeY Suite [T3, C2], which is described in the next chapter, supports
visualisation of traces to violations of invariant properties and liveness proper-
ties formulated using LTL by means of simple message sequence charts. Such
violations are quite easy to visualise, as a violation of an invariant property can
be proved by providing a trace from the initial state to a state not satisfying the
invariant. Violations of LTL properties are rather simple to visualise as well,
as they can be proved by providing a trace to a loop not satisfying the property.
The latter can be visualised by two message sequence charts, one showing the
trace to the loop, and one showing the loop.

Violations of properties formulated using CTL are more complex, however.
The reason is that a proof of a violation is an annotated version of the reacha-
bility graph. Such a proof can of course visualised as a huge graphical graph,
but as soon as the graph contains more than a few dozen nodes, this becomes
impractical. Instead, we propose another way to convince users that properties
hold/do not hold. The idea is that if the users need convincing that the formula
does not hold, it is because he thinks it does hold. In Sect. 3.5 we provide more
details of how this could be done by letting a user try to prove sub-formulae of
the system by choosing some transitions and letting the computer choose other
transitions in a way such that it is impossible for the user to ever arrive at a
proof of the property.

