
Chapter 3

Behavioural Visualisation of Formal

Models

Until now, we have considered the model in Fig. 1.5 as an example of a coloured
Petri net. That is not really true. In fact, according to the ISO standard for
Petri nets [87], a coloured Petri net (in the standard called a high-level Petri
net) is a septuple of types, places, transitions, a type function assigning types
to places and transitions, backward and forward incidence functions indicating
how many tokens are consumed respectively produced when each transition is
executed, and an initial marking. Using this definition and renaming places to
P1–P6 and transitions to T1–T4 to keep the figure more compact, the network
protocol in Fig. 1.5 would look like the tuple in Fig. 3.1. In fact the tuple in
Fig. 3.1 only shows the system in the initial state. To also show the dynamic
behaviour of the protocol, we would need to give a mapping like the initial
marking (the last element of the tuple) for each state encountered. Obviously
the description in Fig. 1.5 is much more readable than the one in Fig. 3.1, which
is exactly why the graphical notation in Fig. 1.5 was invented and is being used
in practise.

The formal description is important when reasoning about the formalism,
e.g., when proving that some extension is just syntactic as is, e.g., the case for
Christensen and Hansen’s synchronous channels [22]. When we want to create
the model or explore it using simulation, we do not need the formal definition
explicitly, and will prefer the graphical notation instead as it makes the be-
haviour of the system much clearer. In Fig. 3.2 we see three different layers
of formal models; the mathematical model in Fig. 3.1 is located in the bottom
layer and is used by developers of the formalism. This layer is used to rea-
son about the formalism and to develop analysis methods which works on all
concrete models. The layer above it, the middle layer, is represented by the
graphical model in Fig. 1.5. It consists of concrete models, and is primarily
used by the formal methods expert, who focuses on creating formal models.
The graphical model shows all places as ellipses and all transitions as rectan-
gles. The type of places is shown next to the place as is the initial marking.
The backward and forward incidence functions are shown as arcs from places
to transitions (in the case of the backwards incidence function) and arcs from
transitions to places (for the forward incidence function) and the right-hand
side of the lambda-expression corresponding to the arc is shown near the arc
if it is not the empty multi-set. The top layer, the visualisation, is used pri-
marily by a domain expert to validate that the formal model corresponds to the
intended system. This is the job of a domain expert, as he has extensive knowl-
edge of the domain of the model, while the formal methods expert will seldom

45

46 Chapter 3. Behavioural Visualisation of Formal Models

({ ID, PACKET, PACKETS, PACKETxPACKETS },

{ P1, P2, P3, P4, P5, P6 },

{ T1, T2, T3, T4 },

{ P1 !→ PACKET, P2 !→ ID, P3 !→ PACKET,

P4 !→ PACKET, P5 !→ ID, P6 !→ PACKETS,

T1 !→ PACKET, T2 !→ PACKET, T3 !→ PACKET,

T4 !→ PACKETxPACKETS },

{ (P1, T1) !→ λx.1‘x, (P1, T2) !→ λx.∅, (P1, T3) !→ λx.∅,

(P1, T4) !→ λx.∅, (P2, T1) !→ λ(x, y).1‘x, (P1, T2) !→ λx.∅,

(P2, T3) !→ λx.∅, (P2, T4) !→ λ(x, y).1‘x, (P3, T1) !→ λx.∅,

(P3, T2) !→ λx.1‘x, (P3, T3) !→ λ(x, y).1‘x, (P3, T4) !→ λx.∅,

(P4, T1) !→ λx.∅, (P4, T2) !→ λx.∅, (P4, T3) !→ λx.∅,

(P4, T4) !→ λx.1‘x, (P5, T1) !→ λx.∅, (P5, T2) !→ λx.∅,

(P5, T3) !→ λ((x, y), z).1‘x, (P5, T4) !→ λx.∅, (P6, T1) !→ λx.∅,

(P6, T2) !→ λx.∅, (P6, T3) !→ λ(x, y).1‘y, (P6, T4) !→ λx.∅ },

{ (P1, T1) !→ λx.1‘x, (P1, T2) !→ λx.∅, (P1, T3) !→ λx.∅},

(P1, T4) !→ λx.∅, (P2, T1) !→ λ(x, y).1‘x, (P1, T2) !→ λx.∅,

(P2, T3) !→ λx.∅, (P2, T4) !→ λ(x, y).1‘(x + 1), (P3, T1) !→ λx.1‘x,

(P3, T2) !→ λx.∅, (P3, T3) !→ λx.∅, (P3, T4) !→ λx.∅,

(P4, T1) !→ λx.∅, (P4, T2) !→ λx.∅, (P4, T3) !→ λ((x, y), z).1‘(x, ””),

(P4, T4) !→ λx.∅, (P5, T1) !→ λx.∅, (P5, T2) !→ λx.∅

(P5, T3) !→ λ((x, y), z).1‘(x + 1), (P5, T4) !→ λx.∅, (P6, T1) !→ λx.∅,

(P6, T2) !→ λx.∅, (P6, T3) !→ λ(x, y).y ∧ ∧x, (P6, T4) !→ λx.∅ },

{ P1 !→ 1‘(1, ”Formal”) + +1‘(2, ” model”), P2 !→ 1‘1,

P3 !→ ∅, P4 !→ ∅, P5 !→ 1‘1, P6 !→ 1‘[] })

Figure 3.1: The network protocol from Fig. 1.5 as it looks using the formal
definition of [87].

know enough about the domain to validate all details of the model. While the
graphical representation in Fig. 1.5 is easier to read for coloured Petri nets ex-
perts, it is not that intuitive for other people, and it may not be evident to a
network engineer that the model in Fig. 1.5 actually is a network protocol. The
problem only gets worse if the model is larger or the domain expert knows even
less about formal models, for example if the domain expert is a nurse. We can
then use the method in Fig. 1.3 to construct a graphical model from the speci-
fication and let the domain expert validate that the formal model corresponds
to the specification using the visualisation.

Relating the Model-View-Controller (MVC) [100] design pattern [54] from
Fig. 1.10 to the 3 layers of use of formal models shown in Fig. 3.2, we can think
of the lowest level, the mathematical model, as the model (in MVC terms) of the
system. We can think of the graphical model as the view. A tool implementing
simulation of a formal model will have an internal representation correspond-
ing to the formal definition, as this is required to implement the correct seman-
tics of the modelling language. It may have a graphical user interface which

3.1. Approaches to Visualisation 47

Figure 3.2: Three layers of use of formal models.

allows the user to manipulate the formal model using the graphical model layer
of Fig. 3.2. The controller allows the modeller to modify the model (thereby in-
crementally building the desired model) and to simulate the model. The basic
idea of most visualisation tools is that we add a new view on the model. The
view will often be more simplistic than the graphical representation of the un-
derlying formal model, the graphical model. Some tools will even allow the
user to manipulate the execution of the model.

The rest of this chapter is structured as follows: In Sect. 3.1 we will give a
brief survey of different visualisation tools aimed at various formalisms. Sec-
tions 3.2 to 3.4 summarise papers co-authored by the author of this thesis.
Section 3.2 summarises our paper [T3], which describes the BRITNeY Suite, a
formalism-independent user-extensible platform and tool for creating visuali-
sations of formal models. Section 3.3 summarises our paper [T4], which pro-
vides an industrial case-study where a visualisation of a formal model has been
developed and the BRITNeY Suite visualisation tool put into practical use. Sec-
tion 3.4 summarises our paper [T5], which provides a formalism-independent
abstract framework for visualisations based on game-theory. This framework
gives a formal definition of a visualisation of a formal model lifting visualisa-
tions above an ad-hoc expert-level to a more precise, easier accessible level. Fi-
nally, in Sect. 3.5, we sum up the contribution of our papers [T3], [T4], and [T5]
and provide directions for future work.

3.1 Approaches to Visualisation

Several tools supporting the methodology in Fig. 1.3 exist. In this section we
will describe some of them and discuss strengths and weaknesses of each.

TU Eindhoven’s ExSpect [50] is a tool for modelling based on coloured Petri
nets. ExSpect allows the user to view the state of models by associating wid-
gets with places of the model, and allows users to asynchronously interact with
the model using simple widgets. Widgets can, e.g., show the number of tokens
available on a certain place or add new tokens to places. This makes it possible
to inspect the state of the system using well-known widgets like counters and
gauges, and stimulate the execution by pushing buttons or entering text. Visu-
alisations are created on a dashboard by dragging in the desired widgets, mak-
ing it very easy to create visualisations. The disadvantage of this approach is,
firstly, that it is specific to coloured Petri nets (as it relies on tokens with types)

48 Chapter 3. Behavioural Visualisation of Formal Models

and, secondly, that input from the user is made by switching from one state
of the system to another without formally executing a transition in the model.
This is problematic because the visualisation not only reflects the behaviour
of the formal model, it also changes it, which makes formal verification of the
underlying formal model irrelevant, as the behaviour of the formal model can
be very different from the behaviour of the formal model with a visualisations.
Visualisation is completely integrated in the ExSpect tool, which makes it im-
possible to extend it or use the visualisations with other tools or formalisms.
Finally, this approach only allows users to create visualisations using a pre-
defined set of widgets, thereby making a “cartoon-like” visualisation like the
one in Fig. 1.13 impossible.

Rasmussen and Singh’s MIMIC/CPN [141] is a library which facilitates vi-
sualisation of coloured Petri net models created using DESIGN/CPN [37], a tool
for editing, simulating and analysing coloured Petri nets. It provides an API
which can be used to define and update visualisations. By annotating a CPN
model, functions of the API is called during execution of the model. Visual-
isations can be created using a standard drawing program, so it is easy for
even inexperienced users to layout a visualisation. The disadvantage of this
approach is that it is very inconvenient to have to change the model in order
to add a visualisation and the changes unnecessarily clutter the model. Fur-
thermore, MIMIC/CPN mainly focuses on state changes of the system, and ev-
erything shown to the user must be formulated as explicit updates, so it is not
possible to easily monitor the value of, e.g., a counter like in ExSpect. Also, the
library is very low-level, as it only allows the model to display, hide, and change
the position of items previously created using the editor or using the API. The
only higher-level widget supported is an ability to prompt the user for a string
value, and the only other way for the user to provide input to the model is to
click on buttons defined in the visualisation. Like ExSpect, MIMIC/CPN can
only be used in conjunction with a single tool, namely DESIGN/CPN, but un-
like ExSpect it is possible (yet very tedious) to extend the tool using Standard
ML. Finally, MIMIC/CPN is unable to handle asynchronous input, which must
be simulated by polling.

LTSA [116] is a tool for modelling using labelled transition systems devel-
oped by Magee and Kramer. LTSA allows users to animate models using a
library called SceneBeans [117, 149] developed by Pryce and Magee. Visuali-
sations are tied to models by associating animation activities with transition
labels. Visualisations are specified using an XML file. The SceneBeans library
relies on Java beans [88], which is a Java component framework, and is thus
very extensible, as it is possible to extend the library with new beans. The
method is nice and declarative, but it it very cumbersome to write the visual-
isations as XML files. Like MIMIC/CPN, the model is able to display or hide
already created objects of the visualisation, and can additionally move the ob-
jects around along paths. Visualisations created using the SceneBeans library
are unable to add new objects to the visualisations. The SceneBeans library
can be used without LTSA, but not in conjunction with LTSA models.

Kindler and Páles’ PNVis [99] is an add-on for Weber and Kinder’s Petri
Net Kernel [169], a modular tool for editing Petri nets. PNVis associates to-
kens with 3D objects and places with locations in a 3D world. The geometry of
the 3D world is described using an XML file, and the look of the objects is de-
scribed using VRML [86]. The visualisation is tied to the model by annotating
the model with inscriptions identifying places with locations in the 3D world
and tokens with objects. PNVis is suitable for modelling physical systems, but
not aimed at systems that do not immediately have a physical counter-part.
Furthermore the way visualisations are tied to the formal model requires, of

3.2. The BRITNeY Suite Animation Tool 49

course, that the model is a Petri net. While it is easy to create object descrip-
tions thanks to many available VRML editors, it is cumbersome to create the
description of the world using XML files.

Harel and Marelly’s Play-Engine [66] allows a prototype of a program to be
implemented by inputting scenarios (play-in) via an application-specific GUI.
The resulting program can then be executed (play-out). Compared to the ap-
proach of the other described tools, this makes the model implicit as it is cre-
ated indirectly via the input scenarios. Furthermore, the Play-Engine relies on
heavy-weight techniques to perform visualisation as the model is given implic-
itly. In order to decide how to execute the model, a complete model-checking
step is performed in each step, which is computationally expensive.

3.2 The BRITNeY Suite Animation Tool [T3]

The BRITNeY Suite [C2,T3] was originally developed because CPN Tools [C1,
33] needed a means of creating visualisations of CPN models. As CPN Tools
is written in the Beta programming language [115], it was deemed infeasible
to create the visualisation tool within the tool itself due to lack of off-the-shelf
libraries, meaning that all details of the tool had to be written from scratch.
Instead the BRITNeY Suite was realised as an independent application written
in Java. visualisation to the model. The paper [T3] is a tool presentation of the
BRITNeY Suite, and this section will give the gist of the paper.

The architecture of the BRITNeY Suite, when used with CPN Tools, can be
seen in Fig. 3.3. To the left we see that CPN Tools is actually composed of two
components, a CPN editor and a CPN simulator. The BRITNeY Suite, to the
right, consists of a main application and a number of extension plug-ins. Each
extension plug-in extends the main application with new kinds of visualisation.
Presently, over 20 extension plug-ins ship with the BRITNeY Suite, making it
possible to create various charts, including message sequence charts (MSC)
[67], gantt charts, and histograms, draw graphs in two and three dimensions,
generate textual reports that can be exported to PDF files, show various dialog
boxes for receiving information from and presenting information to users, and
for integrating visualisations using the SceneBeans library also used by LTSA.
CPN Tools communicates with the BRITNeY Suite using a standard Remote
Procedure Call (RPC) [32, Sect. 5.3] mechanism called XML-RPC [170]. In
order to make the communication seamless, a Stub generator component of the
BRITNeY Suite injects stub code into the CPN simulator, which can then be
used directly by the models.

Figure 3.3: Architecture of the BRITNeY Suite when used with CPN Tools

50 Chapter 3. Behavioural Visualisation of Formal Models

Visualisations are tied to models like in MIMIC/CPN, by annotating the
model and calling functions driving the visualisation. Whenever a transition is
executed, the corresponding code is executed, which may invoke a stub and
consequently a function in the visualisation tool. Consider, e.g., the model
in Fig. 3.4(a). The model is the same as the one in Fig. 1.5 and unchanged
parts have been greyed out to highlight the changes. For each transition we
have added an annotation describing how the visualisation should be updated
when the transition is executed. We can, e.g., see that when the Send Data
transition is executed, an event is created from Sender to Network with a la-
bel corresponding to the data sent. In Fig. 3.4(b) we see an example of the
resulting visualisation. The first packet, containing ”Formal”, is transmitted
and acknowledged successfully (this packet has sequence number 1). Then the
next packet, the one containing ” model”, is transmitted but dropped by the
network. The packet is re-transmitted and an acknowledgement is sent. Be-
fore the acknowledgement arrives at the sender, the packet is re-transmitted.
The acknowledgement is then received and the network drops the outstanding
packet.

While the BRITNeY Suite may seem strongly tied to CPN Tools from this
description, this not the case. Any application can invoke the functions needed
to drive visualisations as a standard protocol is used; the stub generator merely
makes it more convenient to use the tool with CPN Tools. In fact it is possible
to extend the BRITNeY Suite with a stub generator for other modelling tools as
well, as the main application is not actually a solid box as indicated in Fig. 3.3,
but a hierarchy of plug-ins, which can be extended. A more detailed descrip-
tion of the architecture of the BRITNeY Suite can be found in our workshop
paper [C5]. Our paper [T3] also describes two industrial case studies where
the BRITNeY Suite has been used. One of these is the case from [T4], which is
described in Sect. 3.3.

One observation we can make is that most of the visualisations tools from
the previous section are integrated very tightly with the editor of some mod-
elling formalism or are low-level libraries that have to be integrated into real
tools. This means that it is difficult or even impossible to use the visualisation
tools with other formalisms. Furthermore, all of the tools except SceneBeans
have a closed architecture, which makes it difficult to extend the functionality
of the tools for people other than the formal method developers. In Table 3.1
the five visualisation tools mentioned in the previous section have been com-
pared with the BRITNeY Suite. We note that the BRITNeY Suite is shown
in two different variations, BRITNeY Suite 1 and BRITNeY Suite 2. The ver-
sion of the BRITNeY Suite described in this section, [T3], and used in the case
study of [T4] is labelled BRITNeY Suite 1. BRITNeY Suite 2 is the label of the
version of the BRITNeY Suite described in Sect. 3.4 and [T5]. The column
“Tool/formalism independent” shows whether the visualisation tool is tied so
close to a modelling tool that it is impossible to use it independently of the tool.
The column “User extensible” shows whether it is possible to extend the tool
for people other than the original developers. “Standard widgets” and “User-
drawn visualisation” show whether the tool supports standard widgets like
check-boxes, gauges, and buttons or animated cartoons or drawings specified
by the user. “GUI for creating visualisations” shows whether the visualisations
can be drawn by the user using a user-friendly designer. “Dynamic instantia-
tion of objects in visualisation” shows whether it is possible to instantiate ob-
jects in the visualisation (as opposed to requiring that all used objects must
be created manually before starting visualisation). The columns “Synchronous
operation” and “Asynchronous operation” indicate whether the tool supports
halting the execution of the model and waiting for user input respectively if it

3.2. The BRITNeY Suite Animation Tool 51

packets

packets^^
[(id, data)]

id

idid+1

(id, data)

(id, "")

id+1

id

(id, data)

(id, data)

(id, data)

(id, data)

Receive
Ack

Receive
Data

Drop

Send
Data

In
Buffer

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

Receive
ID

1

ID

Network 1

PACKET

Out
Buffer

1`(1, "Formal")++
1`(2, " model")

PACKET input (data);
output ();
action
msc.addEvent("Sender", "Network", "\""^data^"\"");

input (id, data);
output ();
action
msc.addEvent
 ("Network", "Receiver", "\""^data^"\"");
msc.addEvent
 ("Receiver", "Network", "Ack "^(Int.toString id))

input (id);
output ();
action
msc.addEvent("Network", "Sender", "Ack "^(Int.toString id))

input ();
output ();
action
msc.addInternalEvent("Network", "Drop")

(a)

(b)

Figure 3.4: The model of a network protocol from Fig. 1.5 with annotations to
drive a visualisation (a) and a resulting visualisation (b).

is possible for the user to manipulate a running simulation without requiring
that the model stops and waits for input. “Integrated with formalism” indicates
whether the tools supports a natural binding of the visualisation to the model.

52 Chapter 3. Behavioural Visualisation of Formal Models

Table 3.1: Comparison of various visualisation tools.

T
oo

l

T
oo

l/
fo

rm
a
li

sm
in

d
ep

en
d

en
t

U
se

r
ex

te
n

si
b
le

S
ta

n
d

a
rd

w
id

g
et

s
U

se
r-

d
ra

w
n

v
is

u
a
li

sa
ti

on
s

G
U

I
fo

r
cr

ea
ti

n
g

v
is

u
a
li

sa
ti

on
s

D
y
n

a
m

ic
in

st
a
n

ti
a
ti

on
of

ob
je

ct
s

in
v
is

u
a
li

sa
ti

on

S
y
n

ch
ro

n
ou

s
op

er
a
ti

on
A

sy
n

ch
ro

n
ou

s
op

er
a
ti

on
In

te
g
ra

te
d

w
it

h
fo

rm
a
li

sm

ExSpect ! ! ! !

MIMIC/CPN !a ! ! ! !

LTSA + SceneBeans !b ! ! ! ! !

PNVis ! !c ! ! ! !

Play-Engine ! ! ! !

BRITNeY Suite 1d ! ! ! ! !e ! !

BRITNeY Suite 2d ! ! ! ! !e ! ! ! !

aMIMIC/CPN can be extended using SML code, but this is not for the faint of heart.
bThe SceneBeans library can be used independently of LTSA, but must be integrated in a Java

program.
cObject description are created using standard VRML files and they can be created using most

3D drawing programs. The description of the world must be written manually as an XML file.
dThe version of the BRITNeY Suite presented in [T3] (BRITNeY Suite 1) did not have support

for asynchronous operation and formalism integration. The version described in [T5] (BRITNeY
Suite 2) does support this.

eDepends on the visualisation.

3.3 Model-based Prototyping
of an Interoperability Protocol
for Mobile Ad-hoc Networks [T4]

The paper [T4], co-authored by the author of this thesis, describes an industrial
case study where coloured Petri nets have been used to develop a formal model
and a model-driven prototype of a network protocol. The project [101] is a
collaboration between Ericsson Denmark A/S, Telebit [47] and the CPN group
at the University of Aarhus [34].

In Figs. 3.5 and 3.6, we see two visualisations of an interoperability proto-
col for mobile ad-hoc networks [T4]. The protocol is used to ensure that the
mobile ad-hoc nodes (the laptops) can communicate with the stationary host,
even when on the move. Each gateway owns a specific sub-net of IP addresses.
Based on the IP address of an ad-hoc node, it is possible to decide which gate-

3.3. Model-based Prototyping of an Interoperability Protocol 53

Figure 3.5: A visualisation of an interoperability protocol for mobile ad-hoc
networks using message sequence charts.

way to use. The basic operation of the model is illustrated by the message
sequence chart in Fig. 3.5. When a Host wants to transmit data to a mobile
node, say Node 3, it looks up its address at the DNS server, which returns the
IP address of the mobile node. From the IP address, the Host knows to send
the packet via Gateway 1, which is closest to the mobile computer. The gate-
way forwards the packet to Node 3. Now, Node 3 moves physically, leading
to it being closer to Gateway 2. Now, at some point in time, Gateway 2 sends
out a gateway advertisement to all reachable mobile nodes. When Node 3 re-
ceives the advertisement it discovers that it is closer than Gateway 1. Node 3
switches IP addresses to one in the prefix owned by Gateway 2 and transmits
a DNS update, via its new gateway, to the DNS server. If the host now wants
to send data to Node 3, it will receive a new IP address from the DNS server,
and conclude that packets to Node 3 should now go though Gateway 2. The
visualisation in Fig. 3.6 enables users to observe the behaviour of the system
as coloured dots, representing packets, flow along the network. Furthermore,
the visualisation allows users to provide stimuli to the protocol by dragging
and dropping the laptops to indicate node movement. The use of an underlying
formal model can be completely hidden when experimenting with the proto-
type. The domain-specific GUI has been used in the project both internally
during protocol design and externally when presenting the designed protocol
to management and protocol engineers not familiar with CPN modelling. The
message sequence chart in Fig. 3.5 is also created using the BRITNeY Suite.

In this project the goal was not to arrive at an implementation but rather to
evaluate different techniques to facilitating communication between stationary
hosts and mobile nodes which may move during communication. This means
that the visualisation and formal model was actually the product rather than
a means to construct correct software. A contribution of the paper was there-
fore the idea of using the method in Fig. 1.3 to produce a model-driven proto-
type. Our industrial partners, Ericsson Denmark A/S, Telebit, in parallel with
the implementation of the model-driven prototype made an implementation of
a simpler version of the protocol using real software and hardware, and the

54 Chapter 3. Behavioural Visualisation of Formal Models

Figure 3.6: A cartoon-like visualisation of an interoperability protocol for mo-
bile ad-hoc networks based on network diagrams.

two prototypes were both presented to management. The model-driven proto-
type has several advantages over a hardware based prototype, including that
a model-based prototype is easier to control compared to a physical prototype,
in particular in the case of mobile nodes and wireless communication where
scenarios can be very difficult to control and reproduce. Furthermore, imple-
mentation details can be abstracted away and only the key parts of the design
have to be specified in detail. As an example, in the CPN model of the interop-
erability protocol we have abstracted away the routing mechanisms in the core
and ad-hoc networks, the mechanism used for distribution of advertisements,
and how nodes determine distance to gateways. Instead, we have modelled
the service provided by these components only. The possibility of making ab-
straction means that it is possible to obtain an executable prototype without
implementing all components. Also, the use of a model means that there is
no need to invest in physical equipment and no need to set up actual physi-
cal equipment. This also makes it possible to investigate larger scenarios, e.g.,
scenarios that may not be feasible to investigate with the available physical
equipment. All of these advantages stem from the fact that we have created
an abstract formal model. It would have been difficult to present the model to
management and engineers without a visualisation, however. The use of vi-
sualisation on top of a formal model yields further advantages, including that
the behaviour observed by the user is as defined by the underlying model that
formally specifies the design. The alternative would have been to implement
a separate visualisation package in, e.g., Java, totally detached from the CPN
model. We would then have obtained a model closer to the actual implemen-
tation, but the disadvantage of this approach would have been a double repre-
sentation of the dynamics of the interoperability protocol. The use of a domain
specific graphical user interface (the visualisation) has the advantage that the
design can be experimented with and explored without having knowledge of
the CPN modelling language. This is also illustrated by the fact that the idea
of the protocol has been described in this section using the visualisations de-
veloped during the project. The work presented in [T4] has demonstrated that

3.4. A Game-theoretic Approach to Behavioural Visualisation 55

using CP-nets and the supporting computer tools for building a model-based
prototype can provide a viable and useful alternative to building a physical
prototype. Furthermore, the CPN model can also serve as a basis for further
development of the interoperability protocol, e.g., by refining the modelling of
the routing and advertisement distribution mechanisms to the concrete proto-
cols that would be required to implement the solution. There is still a gap from
the CPN model to the actual implementation of the interoperability protocol,
but the CPN modelling has yielded an executable prototype that can be used
to explore the solution and serve as a basis for the later implementation.

Important lessons from the project include that asynchronous input to the
model is important. The model-based prototype described in [T4] let the pro-
tocol perform actions itself, such as sending out gateway advertisements, but
should react immediately when the user wants to send data to a mobile node
or when a mobile node is moved. As the project built on a version of the BRIT-
NeY Suite, which tied visualisations to models using inscriptions (the version
described in Sect. 3.2), we had to implement polling of the visualisation for
user interaction. When the model was able to perform a lot of transitions itself
(e.g. when a lot of packets and gateway advertisements were outstanding), this
would result in very poor feedback from the visualisation. Additionally, the
verbose inscriptions required to keep the visualisation up-to-date made it dif-
ficult to describe the model to the engineers who actually had experience with
CPN models.

3.4 A Game-theoretic Approach to Behavioural
Visualisation [T5]

As can be seen from Table 3.1, the version of the BRITNeY Suite described in
Sect. 3.2 did not have support for asynchronous operation and integration with
the formalism. The tool, as described in Sect. 3.2 and in [T3], is only able to
support synchronous operation as visualisation functions are called whenever
a transition occurs and it is not possible to do the opposite: force a transition
to occur whenever something happens in the visualisation. This is acceptable
if the purpose of the visualisation is only to show the operation of the mod-
els, such as the MSC in Fig. 3.4(b), which shows the execution of the network
protocol in Fig. 3.4(a), but did, e.g., not suffice for the visualisation in Fig. 3.6,
where the model should perform tasks in the background and react immedi-
ately on user stimulation such as when a node is moved. Another problem is
that the added annotations are big and hardly declarative, which clutters the
model and makes even the simple models seem complex as illustrated by the
annotated model in Fig. 3.4(a). This can be alleviated by using Lindstrøm and
Wells’ monitors [113], which basically move the inscriptions to a separate list.
A disadvantage of this approach is that the inscriptions are merely hidden,
which makes it difficult to see the connection between the visualisation and
the formal model.

While it is possible to ask the user for very simple information if we accept
stopping the execution of the model meanwhile, if we want to create a visu-
alisation which shows the operation of the model while allowing the user to
stimulate the model, we will need to implement a polling mechanism. This
clutters the model even further and makes the model and visualisation seem
unresponsive as the model will not react until the visualisation is polled by the
model. Furthermore, as annotations have to be added to each transition, it is
easy to forget some. If, e.g., the inscription at the Drop transition in Fig. 3.4(a)

56 Chapter 3. Behavioural Visualisation of Formal Models

is omitted, we would never see the Drop event on the Network. This may lead
domain experts to believe that packets cannot be lost. Additionally, this way
of adding visualisations is unique to CPN models (though the idea of execut-
ing code whenever a transition is executed of course can be adapted to other
formalisms as well). Finally, using this approach makes it difficult to switch
visualisations on and off unless we use monitors, which can be switched on and
off individually. For example, when we do analysis using the reachability graph
method as described in the previous chapter, we will need to execute a lot of
transitions. As transitions may not be executed in the order they would during
a simulation of the model, the resulting visualisation will often be useless and
only slow down analysis. It is also possible that we may wish to create more
than one visualisation for each model, for example we may want to create a
visualisation like the one in Fig. 1.13 and one like Fig. 3.4(b) for the network
protocol model in Fig. 3.4(a). If we have more than one visualisation we may
only want to see the result of the execution of the model using one visualisation
or we may want to see the result in both. As we are allowed to execute arbi-
trary code when a transition is executed, it is of course possible to write code
that facilitates this, but it will hardly be easy to read and modify and therefore
difficult to maintain.

The paper [T5] defines a formal framework for visualisations, which tries
to alleviate these problems, as we shall see later. The idea is to view a visuali-
sation as a formal model and synchronise it with the formal model we want to
visualise. To make it possible to view the result of the execution of the formal
model as well as provide stimulation to the model without letting the visualisa-
tion change the behaviour of the model, we rely on the notion of games. A game
is basically a labelled transitions system where the transitions are partitioned
into controllable and uncontrollable transitions. The notion is a formalisation
of normal board games, such as tic-tac-toe. Here a player plays against an op-
ponent. The player is able to make certain moves (such as drawing a cross on
the board) whereas the opponent is able to make other moves (such as adding
a nought to the board). The player is able to decide which moves he wishes to
make, his moves are controllable, whereas he is incapable of controlling which
moves the opponent wishes to make, they are uncontrollable. This is formalised
in Def. 3.1.

Definition 3.1 (Game) A game (or game transition system) is a tuple, G = (S,
T u, T c, ∆, sI , W), where

• S %= ∅ is a set of states,

• T u and T c are sets of uncontrollable transitions respectively control-
lable transitions such that T u ∩ T c = ∅,

• ∆ ⊆ S × (T u ∪ T c) × S is the transition relation indicating successor
states,

• sI ∈ S is the initial state, and

• W ⊆ S is a set of winning states.

A similar definition can be created for any formalism which uses transition
systems as semantical foundation. One example of such a formalism is coloured
Petri nets, which can be extended to game coloured Petri nets, introduced in
[C4], by the author of this thesis. Game coloured Petri nets are coloured Petri
nets except the transitions are separated into controllable and uncontrollable
ones. Consider, e.g., the model in Fig. 3.7. This is the same model as the
one in Fig. 1.5 except the Drop transition is drawn with a dashed line. This

3.4. A Game-theoretic Approach to Behavioural Visualisation 57

packets

packets^^
[(id, data)]

id

idid+1

(id, data)

(id, "")

id+1

(id, data)

(id, data)

(id, data)

(id, data)

Receive
Ack

Receive
Data

Drop

Send
Data

In
Buffer

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

Receive
ID

1

ID

Network 1

PACKET

Out
Buffer

1`(1, "Formal")++
1`(2, " model")

PACKET

id

1

1`[]

1 1`1
1 1`1

2

1`(1,"Formal")++
1`(2," model")

Figure 3.7: A formal model of a simple protocol modelled as a game coloured
Petri net.

Figure 3.8: Fragment of a visualisation of a simple network protocol as a la-
belled transition system.

indicates that the Drop transition is uncontrollable. The rest of the transitions
are controllable. In this way we state that the network protocol is only able to
control what happens at the sender and receiver, it is unable to control whether
the network drops packets. In this way we have modelled the system we wish
to analyse, we have modelled the environment (the network), and we have
modelled how the two can interact.

The idea of the work in [T5] is to view visualisations as game transition
systems synchronised [2] with formal models also modelled as game transition
systems. The visualisation plays one side of the game and the formal model
the other. The rationale behind the idea of considering visualisations as tran-
sition systems is that we can consider what is visible in the visualisation as a
state of the visualisation, and changes to what can be seen can be considered
as transitions of the visualisation. Consider for example the fragment of a vi-
sualisation of the simple network protocol in Fig. 3.8. Here we see three states
(the ovals) and three labelled transitions between them (the arrows with labels
in rectangles). The states show different static views and the transitions are
animations taking the visualisation from one state to the next. Some of the
arrows are dashed, indicating that they are uncontrollable, i.e., not controlled
by the environment but by the system we model.

If we allow all synchronisations between a visualisation and a model, the

58 Chapter 3. Behavioural Visualisation of Formal Models

behaviour of the synchronisation is not defined by the model, but by the model
and the visualisation in unison. As an example, if we create a visualisation
consisting of only one state and no transitions, the synchronisation between
this and any formal model is also without behaviour which is not what we
want to obtain, as this corresponds to creating a visualisation of the network
protocol in Fig. 3.4(a) and omitting a visualisation of the Drop transition. We
want the behaviour of the synchronised system to be dictated by the model
and use the visualisation to show what happens in the model (we will deal
with stimulation of the model shortly). In order to do this, we require that the
visualisation is able to simulate [124] the model. In that way, the behaviour of
the synchronisation is dictated entirely by the model.

If we also want to manipulate the execution of the model, we need to loosen
the requirement that the visualisation must be able to simulate the model.
Rather than allowing arbitrary synchronisations, which would make it difficult
to distinguish between actions taken by the model itself and actions initiated
by the user, we rely on games. The idea is that the visualisation plays one side
of a game and the model plays the other side; controllable transitions of the
visualisation are executed synchronised with uncontrollable transitions of the
model and vice versa. We require that the uncontrollable transitions of one side
can simulate the controllable transitions of the other side. This is formulated
in Def. 3.2.

Definition 3.2 (Visualisation) Given a model as a game GM = (SM , T u
M , T c

M ,
∆M , sIM , WM), a visualisation GV = (SV , T u

V , T c
V , ∆V , sIV , WV), and a syn-

chronisation constraint S ⊆ (T u
M × T c

V) ∪ (T c
M × T u

V), we say that GV can be
used as a visualisation of GM with S iff there exists a relation ∼⊆ SM ×SV such
that whenever sM ∼ sV

• for all α ∈ T c
M if sM

α
−→ sM

′ there exist sV
′ ∈ SV , β ∈ T u

V such that sM
′ ∼

sV
′, (α, β) ∈ S, and sV

β
−→ sV

′, and

• for all β ∈ T c
V if sV

β
−→ sV

′ there exist sM
′ ∈ SM , α ∈ T u

M such that sM
′ ∼

sV
′, (α, β) ∈ S, and sM

β
−→ sM

′.

Furthermore we require that sIM ∼ sIV .

In [T5] two example visualisations are described: message sequence charts
and SceneBeans visualisations. These visualisations correspond to Fig. 3.4(b)
and Fig. 1.13 respectively.

This view of visualisations addresses all the aforementioned problems: Ty-
ing the visualisation to a model no longer requires inscriptions, but rather the
definition of a synchronisation constraint. This constraint can of course be
defined using inscriptions, but it can also be specified separately, like in the
case of monitors. All the visualisations described in [T5] and [C4] comes with
a constraint which uses conventions rather than specifications to synchronise
visualisations to CPN models, completely eliminating the need to manually tie
visualisations to formal models. The basic idea is to use the name of transitions
and places to tie the visualisations to models. For example, when a transition
named Send Data is executed, an event named sendData can be generated in
a MSC, or the user can be shown a dialog box titled Send Data. In addition to
reducing clutter, this approach to visualisation also makes it possible to turn vi-
sualisations on and off easily, as we can just state that a certain constraint and
visualisation should not be used during execution of the model. As definition
3.2 requires that whenever the formal models makes a controllable move, the
visualisation must be able to make a corresponding uncontrollable move, it be-
comes impossible to forget an inscription leading to erroneous visualisations. If

3.5. Contributions and Future Work 59

we wish to ignore an event form the model, we must do so explicitly by adding a
transition to the visualisation corresponding to “do nothing” and synchronising
this transition with the event we wish to ignore. Furthermore, the definition
comes with built-in support for both synchronous and asynchronous operation.
While the definition requires that the visualisation and formal model always
run synchronously, it allows information to flow in both directions. Here infor-
mation flow from the formal model to the visualisation corresponds to visual
updates, whereas flow in the other direction corresponds to stimulation of the
model. This corresponds to asynchronous operation: when the user has pro-
vided no input, the model just executes normally and as soon as the user pro-
vides input the model is able to receive that input. Synchronous operation is
done simply by letting the model execute no transitions, e.g., because by letting
only controllable transitions (from the point of view of the model) be enabled.

The paper [T5] additionally considers implementation details. Firstly, a
Java interface is presented. The interface makes it possible to implement visu-
alisations without knowing which formalism will make use of it. As long as a
formalism has a semantical foundation in games it is possible to immediately
synchronise models created using the formalism with visualisations without
changing the formalism. The paper also considers how to deal with fairness
when executing a formal model with a visualisation. For example, we may of-
ten want the formal model to react immediately on user input, and this can
be done by giving priority to uncontrollable transitions (from the point of view
of the formal model). Additional fairness criteria, such as delays and strict al-
ternation are also considered. Two example uses of visualisations are given: a
revised version of the industrial case study described in [T4] and Sect. 3.3 and
visualisation of a certain kind of properties of reachability graphs.

3.5 Contributions and Future Work

In this chapter we have discussed a number of tools that can be used for visual-
isation of formal models. In particular we have seen the BRITNeY Suite, which
is developed by the author of this thesis. We have considered the architecture
of the BRITNeY Suite and we have seen an industrial case study where the
BRITNeY Suite has been used to develop a model-based prototype of a protocol
facilitating communication between mobile nodes in ad-hoc networks. Finally,
we have seen a game-theory-founded formal framework for describing visuali-
sations which gives visualisations a formal semantics, and provides a founda-
tion for tying visualisations to formalisms without altering either. This section
will discuss the contribution made to visualisation of formal models and some
applications and experiences by the author of this thesis. We go on to describe
several applications of the BRITNeY Suite by other research groups, and fi-
nally we provide some directions for future work.

The BRITNeY Suite, as presented in [T3], provides a tool which makes it
possible to visualise formal models. The tool is extensible by means of plug-ins
and has been integrated with CPN Tools. The BRITNeY Suite has already been
used in several projects, among these a project to to build a model-based proto-
type of a network protocol, as described in out paper [T4]. This project heavily
influenced the development of the BRITNeY Suite as it suggested several pos-
sible improvements of the BRITNeY Suite. One problem we observed was that
at the end of the project our industrial partner, Ericsson Denmark A/S, Telebit,
would like a copy of the developed prototype. Distribution of the prototype was
easy enough, but a very brief manual to help starting the prototype grew ex-
tremely long because setting up the prototype for experimentation was rather

60 Chapter 3. Behavioural Visualisation of Formal Models

complex. Therefore the BRITNeY Suite was changed to allow web-start [95]
launch of visualisations. By writing a simple specification and designing the
CPN model in a certain way (the details are available in our workshop pa-
per [C6]), it is possible to upload the BRITNeY Suite to a web-server and allow
users to start the visualisation using a single click in a web-browser.

Two other problems encountered in the industrial case study from [T4] have
been alleviated. Firstly, we needed to be able to stimulate the model during
simulation, and secondly, the very verbose annotations to the model made a
relatively easy to understand model seem overly complex. In the paper [T3]
we suggest that asynchronous interaction between the formal model and the
BRITNeY Suite could happen via special fusion places [91, Chap. 3], and in
[C3] we suggest that synchronous channels between the formal model and the
visualisation could alleviate the need for complex annotations of the model.
We believe that the direction taken in [T5], where visualisations are regarded
as games synchronised with the formal model, is nicer, more declarative, and
more formalism independent. In addition to the message sequence chart and
cartoon-line Scenebeans visualisations based on this idea, both presented in
Sect. 3.4 and [T5], our paper [C4], gives a third, CP-net specific, example of a
visualisation. This visualisation makes it possible to automatically generate
form-filling applications from a CPN model.

3.5.1 Applications by the Author of this Thesis

In addition to the case study described in [T4] and Sect. 3.3, we have used the
BRITNeY Suite in various other settings. Some of these will be described here.

The BRITNeY Suite Platform for Experiments with Coloured Petri
Nets

In [C5], we extend the scope of the BRITNeY Suite, by showing how it is possi-
ble to use the BRITNeY Suite to experiment with the CPN formalism. Thereby
we broaden the audience from formal methods experts, developing and visu-
alising formal models, to also include formalism developers, who improve the
formalism. This is possible by using the pluggable architecture of the BRIT-
NeY Suite to extend the tool and use fairly high-level constructs to interact
with the CPN model. It is possible use this to make high-level experiments
with the formalism. Some formalism developers think of new constructs whose
purpose is to make it easier and more natural to use the CPN formalism. Such
extensions include transition fusion [22] (or synchronous channels), inhibitor
arcs [21], bounded places, FIFO (first-in-first-out) places, and prioritised tran-
sitions. All of these constructs can be given a semantics by simply translating
them to regular CP-nets. Using the scripting facilities described in [C5], we
show how to implement a custom scheduler, which makes it possible to priori-
tise transitions in as little as 30 lines of code, demonstrating that it is relatively
easy to implement support for new language constructs to validating whether
they are useful.

Command-line loading of CPN models

The BRITNeY Suite has also been used by the author of this thesis in a more
unconventional way, namely to load CPN models from the command line. In the
ASCoVeCo project (Advanced State Space Methods and Computer tools for Ver-
ification of Communication Protocols) [3] at the University of Aarhus, among
other things, an automated test-suite of a tool for reachability graph analysis

3.5. Contributions and Future Work 61

is being developed (for more details refer to Sect. 2.5.1). The author of this
thesis participates in the ASCoVeCo project. As the tool implements reacha-
bility graph analysis of CPN models, it is necessary to automatically compile
the tool, load a model, and run analysis in order to automatically test the tool.
The trouble arises when we want to load the model, as CPN Tools [C1, 33] has
no means to do that from the command-line. Furthermore, as the CPN Tools
editor does not use the Model-View-Controller design pattern from Fig. 1.10, it
would be difficult and tedious to implement this feature.

As can be seen in Fig. 3.3, CPN Tools actually consists of two separate com-
ponents, an editor and a simulator. The simulator is only able to communicate
with one process at a time, so Fig. 3.3, while conceptually correct, does not ac-
tually reflect how communication takes place in practise. The BRITNeY Suite
generates and injects stubs into the CPN simulator, and therefore needs to
communicate with the simulator, so it implements a proxy, which mediates the
communication from the CPN editor to the simulator. Exploiting this proxy,
it is easy to record and replay this communication between the CPN editor
and the simulator using the BRITNeY Suite and later replay it. The BRIT-
NeY Suite implements the Model-View-Controller design pattern so it is easy
to create a command-line version which is able to replay the recorded commu-
nication.

Automatic testing thus consists of first recording the communication be-
tween the CPN editor and the simulator for each model in the test-suite. This
step requires manual intervention to load the model using CPN Tools, but only
has to be done once to generate a recording. Now, each time we wish to run
a test, we just need to recompile the reachability graph analysis tool (this of
course only has to be done once for each test run; after that the result can be
re-used for all models) and load the model by replaying the recording using a
command-line version of the BRITNeY Suite. Finally, we load and run the test.

Exploiting the BRITNeY Suite in this manner made it possible to imple-
ment automatic loading of CPN models into the simulator in days rather than
weeks or months, which would be required to create a loader from scratch or to
refactor CPN Tools to make it possible to create a command-line version.

3.5.2 Applications by other Research Groups

All applications discussed until now has been made by or in cooperation with
the author of this thesis. The BRITNeY Suite has also been used by several
other individuals and research groups. Use ranges from simple visualisation of
formal models, which is of course the main application of the BRITNeY Suite,
over meta-visualisation, where the BRITNeY Suite is used to provide visual-
isation of other formalisms by translating formal models into coloured Petri
net models, to other applications, where the BRITNeY Suite is used in nontra-
ditional ways to, e.g., to integrate the CPN simulator into a multi-formalism
tool. In this section we will provide some examples of applications BRITNeY
Suite. We will only provide few examples from the first category as the idea of
such applications is often very similar to our own application in [T4]. Some of
these applications are not published yet due to the fact that the BRITNeY Suite
was released to a broad audience in September 2006, only nine months before
this overview paper was written. Thus some of the applications described are
only known to the author thanks to personal communication. In these cases
no publications are cited, but the name and affiliation of the contact person is
mentioned.

62 Chapter 3. Behavioural Visualisation of Formal Models

Visualisation of blanc-loan applications

In [94] Jørgensen and Lassen use the BRITNeY Suite to create a visualisation
for requirements engineering of a new workflow system [164] for banks. The
goal of the workflow system is to support the handling of blanc loan applica-
tions. Users can interact with the visualisation by, e.g., setting up loans for
customers to make a loan request, or by changing the status of loan requests
on behalf of bank assistants and a bank manager to, e.g., grant or reject the
requests. The use of an abstract visualisation allows users to focus on the
workflow and not on how the interface of the future system should look like.

Visualisation of electronic patient record

In [144] Jørgensen, Lassen, and Aalst present a use-case consisting of a elec-
tronic patient record to be developed for Fyns County in Denmark. The work
builds on task descriptions, corresponding to the specification in Fig. 1.3, which
are translated to a model of the problem using coloured Petri nets. This model
is visualised using the BRITNeY Suite in order to validate that it really corre-
sponds to the task descriptions (specification) using the approach in Fig. 1.3.
From the coloured Petri net model a model of the system is constructed in
Aalst, Jørgensen, and Lassen’s coloured workflow nets [162] and translated to
Aalst and Hofstede’s YAWL (yet another workflow language) [163], which is an
executable workflow language.

Visualisation of behaviour of UML sequence diagrams

In [114] Machade et al. consider the derivation of system requirements from
user requirements. User requirements are requirements for a system imposed
by the future users of the system, and system requirements are requirements
from the developers, which makes is possible to satisfy the user requirements
in an implementation. Basically, [114] deals with going from the specification
to the formal model in Fig. 1.3.

The formal model (system requirements) is assumed to be specified using
UML [131] sequence diagrams, and the authors wish to use a method similar to
the one in Fig. 1.3 to validate that the formal model corresponds to the specifi-
cation (user requirements). To do that, UML sequence diagrams are translated
into CPN models and the BRITNeY Suite is used to visualise their behaviour.
This is thus an example of a meta-visualisation, as the BRITNeY Suite is used
to provide visualisations of formal models created using sequence diagrams.
The approach is exemplified using an information system called uPAIN whose
main concern is pain control of patients in a hospital.

In [145], Ribeiro and Fernandes also consider translation of UML sequence
diagrams to CPN models in order to facilitate visualisation of UML sequence
diagrams. Here a case study of an industrial reactor system is presented.

Implementation of a workflow simulator

When implementing workflow systems, one typically uses a language or tool
designed specifically for this. One advanced example of such a language is
YAWL [163]. Using YAWL it is possible to automatically generate a user in-
terface, which makes it possible for participants to acquire and complete tasks.
Another workflow language is coloured workflow nets [162], which are a re-
stricted form of coloured Petri nets. In order to obtain automatic generation
of a visualisation of the workflow system, the BRITNeY Suite is used. This

3.5. Contributions and Future Work 63

work is conducted by Kristian Bisgaard Lassen at the University of Aarhus,
Denmark.

It is of course immediately possible to use the BRITNeY Suite for visualisa-
tion as coloured workflow nets form a sub-class of coloured Petri nets and hence
can be executed by CPN Tools [C1,33]. But, due to the fact that coloured work-
flow nets are restricted and have a quite predictable structure (which shall
not be explained in this thesis), it is possible to generate a single visualisation
which can automatically be used for any coloured workflow net model. The
work uses the idea of regarding visualisations as games, and extends coloured
workflow nets slightly by separating transitions into controllable and uncon-
trollable transitions. This makes models special cases of game coloured Petri
nets [C4] models, which can be visualised by the BRITNeY Suite. Controllable
actions are performed automatically by the workflow system, and uncontrol-
lable actions must be performed by the user. The goal is to make visualisation
of coloured workflow net models a push-button technology.

Delegation of complex calculations in CPN models to Java

While Standard ML is well-suited for functional calculations, such as the im-
plementation of a coloured Petri net simulator, it is not very well-suited for
calculations which depend on and update complex data structures. Further-
more, Standard ML is not as well-known as more main-stream languages such
as Java, making it difficult to obtain off-the-shelf libraries for performing stan-
dard calculations or to employ programmers capable of implementing calcula-
tions. It may therefore be interesting to be able to perform some tasks, such as
complex imperative algorithms, in Java rather than in Standard ML.

The plug-in architecture of the BRITNeY Suite was originally tailored for
adding new kinds of visualisations, but can be used to call arbitrary Java code
from CPN models. The first use of this is in [T4], where a plug-in named Data-
Store is developed. The plug-in makes it possible to maintain a set of counters,
which in the project is used to show the size of the ingoing and outgoing buffers
of nodes in a network in a visualisation. Riahi Bilel from Faculté des Sciences
de Tunis (FST) uses the BRITNeY Suite to implement a protocol for sensor
networks. The goal of the protocol is to conserve energy in the sensor network
by turning off sensors not required for correct operation, i.e., that the entire
area where the network is deployed is covered and that all sensors are able
to communicate with a fixed base station. The protocol keeps track of a large
number of sensors. A CPN model keeps tracks of the sensors and a plug-in,
written in Java, calculates which sensors to turn on or off depending the sen-
sor configuration. The plug-in consists of 5 Java classes and 1300 lines of Java
code, which would be difficult to write in Standard ML unless the programmer
is experienced in the language.

Integration of CPN simulator into multi-formalism tool

György Balogh from Vanderbilt University, USA, wants to integrate the CPN
simulator into Morse et al.’s HLA (High Level Architecture) [84, 128], an in-
terface for integrating simulation engines of different formalisms into a single
tool. In order to facilitate such integration, the CPN simulator (or some glue
code) must alert HLA whenever it wants to increase its global clock (using a
version of CP-nets with support for time) from t1 to t2. HLA then makes a
call-back when the CPN simulator is allowed to increase the time to t2. HLA
can also perform information exchange (add tokens to the model) and grant a
smaller time increase t3 < t2 if the produced token is available at time t3.

64 Chapter 3. Behavioural Visualisation of Formal Models

As indicated in Fig. 3.3 it is possible for external processes to communi-
cate with the CPN simulator, but the protocol used [35] is quite complex and
tedious to implement. Rather than implementing the protocol from scratch,
the implementation which is a part of the BRITNeY Suite can be used. The
BRITNeY Suite provides two levels of abstractions of the protocol. One makes
it possible to exchange packets with the simulator. These packets must be
constructed by the implementer and the interface takes care of translating an
abstract description of packets into binary data. A higher level of interaction
is also possible. Here a remote procedure call protocol is implemented on top
of the interface for exchanging packets. Rather than worrying about construct-
ing packets correctly, the implementer only has to construct an object-oriented
representation of the model and use high-level method calls to interact with
the simulator. It is even possible to use the CPN editor part of CPN Tools for
loading the CPN model by using the simulator proxy or recording facility of the
BRITNeY Suite as described earlier.

3.5.3 Future Work

In this section we will provide some directions for future work. As most of
the ideas described earlier in this chapter has already been implemented and
tested in practise, future work mainly consists of improvement of the tools and
documentation. We also describe an interesting way to combine visualisations,
as described in this chapter, with formal verification as described in Chapter 2,
by using a visualisation to convey the fact that certain properties do not hold
for a formal model.

Improvement of the BRITNeY Suite platform for experiments

As can be seen from some of the applications, the users of the BRITNeY Suite
has broadened from consisting of formal methods experts wishing to visualise
the behaviour of a formal model to also include formal methods developers ex-
perimenting with the formalism to evaluate extensions or to use the formalism
in new ways. As described earlier and in a workshop paper by the author
of this thesis, [C5], this is possible with the current version of the BRITNeY
Suite thanks to a pluggable architecture and extensive support for scripting.
This platform can be enhanced in several ways, however, and here we describe
some useful improvements.

While CPN Tools supports incremental syntax check of CPN models, this
is not supported by the BRITNeY Suite. This makes the BRITNeY Suite less
usable for experiments, as time must be spent re-checking models from scratch.
The current implementation automatically updates graphical representations
of models as the internal representation is constructed, and ii would be nice to
improve this to also support incremental syntax check, making it even easier
to load, modify and experiment with CPN models.

Another, more pragmatic, problem is that while some examples exist, the
documentation of the tool could be improved. Currently the documentation
consists mainly of a couple of simple examples, which is fine for applications,
which use the BRITNeY Suite for visualisation of concrete models. While ex-
amples exist that demonstrate how to create extension plug-ins (the source
code for one is available in [C5]), they are very simplistic, and only show sim-
ple ways to interact with the internals of the BRITNeY Suite. This, of course,
makes difficult to implement meta-visualisations or any of the unconventional
applications of the BRITNeY Suite. Better and more advanced examples and a

3.5. Contributions and Future Work 65

better reference manual of the internals of the BRITNeY Suite would alleviate
this problem.

Finally, some of the technical decisions made when the BRITNeY Suite was
developed would probably be made differently today. The first change would be
to use SOAP web-services [63] instead of XML-RPC [170] for invoking meth-
ods in extension plug-ins, and the second change would be to implement the
BRITNeY Suite either as a plug-in to Eclipse [41] or as an Eclipse Rich Client
Platform [120] application. Let us look at the advantages and disadvantages
of each of these in turn.

The use of XML-RPC for communication with the extension plug-ins ben-
efits from the fact the XML-RPC is an open protocol which is easy to under-
stand and implement. Another way to communicate with remote programs is
SOAP web-services, which, like XML-RPC, uses XML messages to invoke re-
mote functions. SOAP web-services additionally supports the Web Service Def-
inition Language (WSDL) [20], an XML-language for describing web-services.
Using this language we could eliminate the stub-generator from the BRITNeY
Suite, and make the clients (such as the CPN simulator) inspect the tool and
generate stub-code themselves. This has the huge advantage that such clients
exist for many programming languages, making it very easy to integrate sup-
port for the BRITNeY Suite in tools for simulation of formal models. The rea-
son for not doing this already is that the SOAP web-services protocol is very
complex and no client exist for Standard ML, the implementation language of
the CPN simulator. As the CPN simulator is the primary user of the BRIT-
NeY Suite, to not break this support and not implement a very complex client
library, the BRITNeY Suite sticks with XML-RPC currently. Implementing
support for SOAP in parallel with XML-RPC is being considered, however, in
order to get the best of both worlds.

The BRITNeY Suite implements its own plug-in mechanism using a very
simplistic plug-in library, the Java Plug-in Framework [89]. This makes it
possible to load code on run-time, either from the local disk or from the In-
ternet. The framework makes it difficult or even impossible to use an Inte-
grated Development Environment (IDE) such as Eclipse for debugging and
single-stepping through the application. If development had happened within
Eclipse, building on the frameworks distributed with Eclipse, it would have
been possible to debug the program within the Eclipse IDE. Furthermore, it
would be possible to distribute plug-ins as Eclipse projects, enabling use of
parts of the functionality without using the entire tool. Finally, it would be
possible to immediately integrate the BRITNeY Suite into applications written
using Eclipse’s frameworks, thereby creating a single tool for writing real pro-
grams, creating formal models, and for visualising formal models (and possibly
real programs as well). Work on moving the BRITNeY Suite to the Eclipse
platform is currently started by the author of this thesis.

Improvement of implementation of visualisations as games

A prototype the framework based on game-theory has been implemented in
the BRITNeY Suite. The prototype implements fairness of the execution, i.e.,
how control is transferred between the user and the tool, in a couple of ways,
namely strict alternation and preference of uncontrollable (user initiated) tran-
sitions. While this is enough for simple examples, it would be very interesting
to experiment with fairness defined by a timed formalism where the execution
of transitions take time.

The current implementation focuses primarily on the events of the system.
For example, the message sequence chart visualisation shows transitions only.

66 Chapter 3. Behavioural Visualisation of Formal Models

The SceneBeans visualisation is also only able to interact with the formal
model via synchronised transitions. This is fine for formalisms that are pri-
marily event-oriented, such as labelled transition systems, where states are
opaque. In formalisms that are both state and event oriented, such as Petri
nets and in particular coloured Petri nets, this is not satisfiable. For example,
the visualisation developed in [T4], shown in Fig. 3.6, shows the contents of the
DNS database (upper left corner), but this is not easy to do using the current
implementation as all updates to the shown DNS database must be formulated
as changes to the visualisation. It would be much easier to just state that the
rectangle in the upper left corner should always reflect the contents of the place
modelling the DNS database. The definition (Def. 3.2) allows this, as informa-
tion can be exchanged via the synchronisation, but the implementation does
not reflect that. It would be very useful to be able to declaratively reflect the
state of he system in the visualisation.

Visualisation of error traces for property violations

This section assumes that the user is familiar with how winning strategies
are calculated for games and how CTL properties are verified. While [T5],
reprinted in Chapter 9, states that it is possible to visualise error traces to
violations of properties discovered using reachability graph analysis, this has
not been implemented and explored extensively.

We want to address the problem that is that it is very difficult to visualise
the existence/non-existence of a winning strategy of a game. For games a win-
ning strategy is basically an annotated reachability graph. All states where
the user has a winning strategy are marked as such. Such an annotated graph
can of course just be shown to the user with winning states coloured green and
other stated coloured red. This can be useful to understand why no winning
strategy exist for small examples. For large examples, such graphs can have
an extremely large number of nodes, making such a visualisation useless in
practise.

In [T5], we suggest using a visualisation of the system created using game-
theory and let the user play against a winning strategy. The idea is that if a
user needs conviction that a winning strategy exists, it is because he thinks he
has a winning strategy for the other side. We let the user play according to his
“winning” strategy – he plays by interacting with a visualisation of the formal
model, while the tool makes moves according to the (real) winning strategy.
As the tool knows a real winning strategy, the user will eventually arrive at
a situation where the system performs some unanticipated action, which may
convince him that no winning strategy exists. Otherwise, the user will believe
he made a mistake, try again until he has exhausted all his options, and finally
be convinced that the computer is always able to win the game. Unanticipated
actions performed by the tool can be useful to understand why a winning strat-
egy exists: if the action is allowed by the model but not by the specification, the
model does not accurately reflect the specification. If, on the other hand, both
the specification and the model allows the action, the specification may need
to be modified and the model updated accordingly. This can be made to work
because, as the user does not have a winning strategy in the initial state, the
tool will just have to execute transitions ensuring that the user is never able to
reach a state from which he has a winning strategy. This is possible because
otherwise the user would have winning strategy.

In a similar way, we can let a user contend against the system to convince
the user that a certain CTL property is not satisfied. A proof that a CTL for-
mula does not hold is an annotated reachability graph, where the annotations

3.5. Contributions and Future Work 67

are sub-formulae of the CTL formula we wish to check. Each node of the reach-
ability graph is annotated with all sub-formulae that hold in the corresponding
state. A visualisation of the fact that the property does not hold also uses a vi-
sualisation of the model created as a game, and shows the user which formula
he has to prove in the shown state, initially the entire formula. CTL formulae
basically consist of statements that must hold on all traces reachable from a
state and statements that must hold on at least one trace. The user provides a
transition to execute (using the visualisation) whenever existence needs to be
proved, and the tool chooses a transition whenever statements must hold for
all traces (naturally selecting a trace where the property does not hold). Like in
the case of visualising winning strategies of games, this will eventually lead to
a situation where some atomic proposition does not hold for the current state,
in which case the strategy of the user was incorrect, causing the user to accept
that the property does not hold or to try again.

It would be nice to have an implementation of this idea in order to exper-
imentally validate that it is a useful way to show error traces. Of course, a
visualisation created in this way can also be used to show error traces for sim-
ple properties for invariant and LTL properties.

