
Chapter 6

The ComBack Method – Extending Hash

Compaction with Backtracking

The paper The ComBack Method—Extending Hash Compaction with Back-
tracking presented in this chapter has been published as a conference pa-
per [T2].

[T2] M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The Com-
Back Method – Extending Hash Compaction with Backtracking. In Proc.
of ATPN’07, volume 4546 of LNCS, pages 446–464. Springer-Verlag,
2007.

The version presented here is identical to the conference paper except for minor
typographical changes.

91





6.1. Introduction 93

The ComBack Method –
Extending Hash Compaction with

Backtracking

Michael Westergaard∗ Lars Michael Kristensen∗†

Gerth Stølting Brodal∗ Lars Arge∗

∗ Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mw,kris,gerth,large}@daimi.au.dk

Abstract

This paper presents the ComBack method for explicit state space ex-
ploration. The ComBack method extends the well-known hash compaction
method such that full coverage of the state space is guaranteed. Each en-
countered state is mapped into a compressed state descriptor (hash value)
as in hash compaction. The method additionally stores for each state an
integer representing the identity of the state and a backedge to a prede-
cessor state. This allows hash collisions to be resolved on-the-fly during
state space exploration using backtracking to reconstruct the full state de-
scriptors when required for comparison with newly encountered states. A
prototype implementation of the ComBack method is used to evaluate the
method on several example systems and compare its performance to related
methods. The results show a reduction in memory usage at an acceptable
cost in exploration time.

6.1 Introduction

Explicit state space exploration is one of the main approaches to verification of
finite-state concurrent systems. The underlying idea is to enumerate all reach-
able states of the system under consideration, and it has been implemented in
computer tools such as SPIN [77], Murφ [85], CPN Tools [C1], and LoLa [150].

The main drawback of verification methods based on state space exploration
is the state explosion problem [161], and several reduction methods have been
developed to alleviate this inherent complexity problem. For explicit state
space exploration these include: methods that explore only a subset of the
state space directed by the verification question [134,160]; methods that delete
states from memory during state space exploration [6, 25, 60]; methods that
store states in a compact manner in memory [57,76,93]; and methods that use
external storage to store the set of visited states [156]. Another approach is
symbolic model checking using, e.g., binary decision diagrams [12] or multi-
valued decision diagrams [96].

Of particular interest in the context of this paper is the hash compaction
method [155, 172], a method to reduce the amount of memory used to store

†Supported by the Carlsberg Foundation and the Danish Research Council for Technology and
Production.



94 Chapter 6. The ComBack Method – Extending Hash Compaction

states. Hash compaction uses a hash function H to map each encountered state
s into a fixed-sized bit-vector H(s) called the compressed state descriptor which
is stored in memory as a representation of the state. The full state descriptor
is not stored in memory. Thus, each discovered state is represented compactly
using typically 32 or 64 bits. The disadvantage of hash compaction is that
two different states may be mapped to the same compressed state descriptor
which implies that the hash compaction method may not explore all reachable
states. The probability of hash collisions can be reduced by using multiple hash
functions [155], but the method still cannot guarantee full coverage of the state
space. If the intent of state space exploration is to find (some) errors, this is
acceptable. If, however, the goal is to prove the absence of errors, discarding
parts of the state space is not acceptable, meaning that hash compaction is
mainly suited for error detection.

The idea of the ComBack method is to augment hash compaction such that
hash collisions can be resolved during state space exploration. This is achieved
by assigning a unique state number to each visited state and by storing, for each
compressed state descriptor, a list of state numbers that have been mapped
to this compressed state descriptor. This information is stored in a state ta-
ble. Furthermore, a backedge table stores a backedge for each visited state. A
backedge for a state s consists of a transition t and a state number n, such that
executing transition t in the predecessor state s′ with state number n leads to s.
The backedges stored in the backedge table determine a spanning tree rooted
in the initial state for the partial state space currently explored. The backedge
table makes it possible, given the state number of a visited state s, to backtrack
to the initial state and thereby obtain a sequence of transitions (corresponding
to a path in the state space) which, when executed from the initial state, leads
to s, which makes it possible to reconstruct the full state descriptor of s.

A potential hash collision is detected whenever a newly generated state s
is mapped to a compressed state descriptor H(s) already stored in the state
table. From the compressed state descriptor and the state table we obtain the
list of visited state numbers mapped to this compressed state descriptor. Using
the backedge table, the full state descriptor can be reconstructed for each of
these states and compared to the newly generated state s. If none of the full
state descriptors for the already stored state numbers is equal to the full state
descriptor of s, then s has not been visited before, and a hash collision has
been detected. The state s is therefore assigned a new state number which is
appended to the list of state numbers for the given compressed state descriptor,
and a backedge for s is inserted into the backedge table. Otherwise, s was
identical to an already visited state and no action is required.

The rest of this paper is organised as follows. Section 6.2 introduces the
basic notation and presents the hash compaction algorithm. Section 6.3 in-
troduces the ComBack method using a small example, and Sect. 6.4 formally
specifies the ComBack algorithm. Section 6.5 presents several variants of the
basic ComBack algorithm, and Sect. 6.6 presents a prototype implementation
together with experimental results obtained on a number of example systems.
Finally, in Sect. 6.7, we sum up the conclusions and discuss future work. The
reader is assumed to be familiar with the basic ideas of explicit state space
exploration.

6.2 Background

The ComBack method has been developed in the context of Coloured Petri nets
(CP-nets or CPNs) [91], but applies to many other modelling languages for con-



6.2. Background 95

current systems such as PT-nets [143], CCS [123], and CSP [71]. We therefore
formulate the ComBack method in the context of (finite) labelled transition sys-
tems to make the presentation independent of a concrete modelling language.

Definition 6.1 (Labelled Transition System) A labelled transition system
(LTS) is a tuple S = (S, T, ∆, sI), where S is a finite set of states, T is a fi-
nite set of transitions, ∆ ⊆ S × T × S is the transition relation, and sI ∈ S
is the initial state.

In the rest of this paper we assume that we are given a labelled transition
system S = (S, T, ∆, sI). Let s, s′ ∈ S be two states and t ∈ T a transition.
If (s, t, s′) ∈ ∆, then t is said to be enabled in s and the occurrence (execu-

tion) of t in s leads to the state s′. This is also written s
t
−→ s′. An occur-

rence sequence is an alternating sequence of states si and transitions ti written

s1
t1−→ s2

t2−→ s3 · · · sn−1
tn−1

−−−→ sn and satisfying si
ti−→ si+1 for 1 ≤ i ≤ n − 1. For

the presentation of the ComBack method, we initially assume that transitions

are deterministic, i.e., if s
t
−→ s′ and s

t
−→ s′′ then s′ = s′′. This holds for tran-

sitions in, e.g., PT-nets and CP-nets. In Sect. 6.5 we show how to extend the
ComBack method to modelling languages with non-deterministic transitions.

We use →∗ to denote the transitive and reflexive closure of ∆, i.e., s →∗ s′ if

and only if there exists an occurrence sequence s1
t1−→ s2

t2−→ s3 · · · sn−1
tn−1

−−−→ sn,
n ≥ 1, with s = s1 and s′ = sn. A state s′ is reachable from s if and only if s →∗

s′, and reach(s) = { s′ ∈ S | s →∗ s′ } denotes the set of states reachable from s.
The state space of a system is the directed graph (V, E) where V = reach(sI) is
the set of nodes and E = {(s, t, s′) ∈ ∆ | s, s′ ∈ V } is the set of edges.

The standard algorithm for explicit state space exploration relies on two
data structures: a state table storing the states that have been discovered until
now, and a waiting set containing the states for which successor states have not
yet been calculated. The state table can be implemented as a hash table, and
the waiting set can be implemented, e.g., as a stack or a fifo-queue if depth-
first or breadth-first exploration is desired. The state table and the waiting set
are initialised to contain the initial state and the algorithm terminates when
the waiting set is empty, at which point the state table contains the reachable
states.

The basic idea of the hash compaction method [155, 172] is to use a hash
function H mapping from states S into the set of bit-strings of some fixed
length. Instead of storing the full state descriptor in the state table for each
visited state s, only the compressed state descriptor (hash value) H(s) is stored.
The waiting set still stores full state descriptors. Algorithm 4 gives the ba-
sic hash compaction algorithm [172]. The state table and the waiting set are
initialised in lines 1–2 with the compressed and full state descriptors for the
initial state sI , respectively. The algorithm then executes a while-loop (lines 4-
9) until the waiting set is empty. In each iteration of the while loop, a state s
is selected and removed from the waiting set (line 5) and each of the succes-
sor states s′ of s are calculated and examined (lines 6-9). If the compressed
state descriptor H(s′) for s′ is not in the state table, then s′ has not been vis-
ited before, and H(s′) is added to the state table and s′ is added to the waiting
set. If the compressed state descriptor H(s′) for s′ is already in the state table,
the assumption of the hash compaction method is that s′ has already been vis-
ited. The advantage of the hash compaction method is that the number of bytes
stored per state is heavily reduced compared to storing the full state descriptor,
which can be several hundreds of bytes for complex systems. The disadvantage
is that the method cannot guarantee full coverage of the state space.



96 Chapter 6. The ComBack Method – Extending Hash Compaction

Algorithm 4 Basic Hash Compaction Algorithm

1: STATETABLE.INIT(); STATETABLE.INSERT(H(sI ))
2: WAITINGSET.INIT(); WAITINGSET.INSERT(sI )
3:

4: while ¬ WAITINGSET.EMPTY() do
5: s ← WAITINGSET.SELECT()
6: for all t, s′ such that (s, t, s′) ∈ ∆ do
7: if ¬ STATETABLE.CONTAINS(H(s′)) then
8: STATETABLE.INSERT(H(s′))
9: WAITINGSET.INSERT(s′)

Figure 6.1 shows an example state space which will also be used when in-
troducing the ComBack method in the next section. Figure 6.1(left) shows the
full state space consisting of the states s1, s2, . . . , s6. The initial state is s1. The
compressed state descriptors h1, h2, h3, h4 have been written to the upper right
of each state. As an example, it can be seen that the states s3, s5, and s6 are
mapped to the same compressed state descriptor h3. Figure 6.1(right) shows
the part of the state space explored by the hash compaction method. The hash
compaction method will consider the states s3, s5, and s6 to be the same state
since they are mapped to the same compressed state descriptor h3. As a result,
the hash compaction method does not explore the full state space.

Several improvements have been developed for the basic hash compaction
method to reduce the probability of not exploring the full state space [155].
None of these improvements guarantee full coverage of the state space. For the
purpose of this paper it therefore suffices to consider the basic hash compaction
algorithm.

6.3 The ComBack Method

The basic idea of the ComBack method is similar to that of the hash com-
paction method: instead of storing the full state descriptors, a hash function is
used to calculate a compressed state descriptor. When using hash compaction,
the main problem is hash collisions, i.e., that states with different full state de-
scriptors (such as s3, s5, and s6 in Fig. 6.1) are mapped to the same compressed
state descriptor. The ComBack method addresses this problem by comparing
the full state descriptors whenever a new state is generated for which the com-
pressed state descriptor is already stored in the state table. This is, however,
done without storing the full state descriptors for the states in the state table.
Instead the full state descriptors of states in the state table are reconstructed

a

b

bb

s1

s2

s6

s4

s3

s5

h3

h3

h4

h3

h2

h1

a

a

a
b

h1

h3

h4

s1

s2

b

s4

s6

h2

a

Figure 6.1: Full state space (left) and state space explored using hash com-
paction (right).



6.3. The ComBack Method 97

on-demand using backtracking to resolve hash collisions. The reconstruction of
full state descriptors using backtracking is achieved by augmenting the hash
compaction algorithm in the following ways:

1. A state number N(s) (integer) is assigned to each visited state s.

2. The state table stores for each compressed state descriptor a collision
list of state numbers for visited states mapped to this compressed state
descriptor.

3. A backedge table is maintained which for each state number N(s) of a
visited state s stores a backedge consisting of a transition t and a state

number N(s′) of a visited state s′ such that s′
t
−→ s.

The augmented state table makes it possible, given a compressed state de-
scriptor H(s) for a newly generated state s, to obtain the state numbers for the
visited states mapped to the compressed state descriptor H(s). For each such
state number N(s′) of a state s′, the backedge table can be used to obtain the
sequence of transitions, t1t2 · · · tn, on some path (occurrence sequence) in the
state space leading from the initial state sI to s′. As we have initially assumed
that transitions are deterministic, executing this occurrence sequence starting
in the initial state will reconstruct the full state descriptor for s′. It is there-
fore possible to compare the full state descriptor of the newly generated state
s to the full state descriptor of s′ and thereby determine whether s has already
been encountered.

Figure 6.2 (left) shows a snapshot of state space exploration using the Com-
Back method on the example that was introduced in Fig. 6.1. The snapshot
represents the situation where the successors of the initial state s1 have been
generated, and the states s2 and s6 are the states currently in the waiting set.
The state number assigned to each state is written inside a box to the upper
left of each state. Figure 6.2 (middle) shows the contents of the state table,
which for each compressed state descriptor hi lists the state numbers mapped
to hi. Figure 6.2 (right) shows the contents of the backedge table. The backedge
table gives for each state number N(s) a pair (N(s′), t), consisting of the state

number N(s′) of a predecessor state s′ and a transition t such that s′
t
−→ s. As

an example, for state number 3 (which is state s6) the backedge table specifies
the pair (1, b) corresponding to the edge in the state space going from state s1

to state s6 labelled with the transition b. For the initial state, which by conven-
tion always has state number 1, no backedge is specified since backtracking
will always be stopped at the initial state.

Assume that s2 is the next state removed from the waiting set. It has a
single successor state s3 which is mapped to the compressed state descriptor
h3 (see Fig. 6.1). A lookup in the state table shows that for the compressed
state descriptor h3 we already have a state with state number 3 stored. We
therefore need to reconstruct the full state descriptor for state number 3 in

a

b

h1

h3

s1

s2

s6

h2

1

2

3 2

h3 3

h1 1

h2

(1, b)

1

2

3

(1, a)

Figure 6.2: Before s2 is processed: state space explored (left), state table (mid-
dle), and backedge table (right).



98 Chapter 6. The ComBack Method – Extending Hash Compaction

a

b

h1

h3

s1

s2

s6

s3

h3

h2

1

2

4

3

a

4h3 3

h1 1

h2 2

(2, a)

1

2

3

(1, a)

(1, b)

4

Figure 6.3: After processing s2: state space explored (left), state table (middle),
and backedge table (right).

order to determine whether s3 is a newly discovered state. The reconstruction
is done in two phases. The first phase uses the backedge table to obtain a
sequence of transitions which, when executed from the initial state, leads to
the state with number 3. A lookup in the backedge table for the state with
state number 3 yields the pair (1, b). Since 1 represents the initial state, the
backtracking terminates with the transition sequence consisting of b. In the
second phase, we use the transition relation ∆ for the system to execute the
transition b in the initial state and obtain the full state descriptor for state
number 3 (which is s6). We can now compare the full state descriptors s3 and
s6. Since these are different, s3 is a new state and assigned state number 4,
which is added to the state table by appending it to the collision list for the
compressed state descriptor h3. In addition s3 is added to the waiting set, and
an entry (2, a) is added to the backedge table for state number 4 in case we
will have to reconstruct s3 later. Figure 6.3 shows the state space explored, the
state table, and the backedge table after processing s2.

The waiting set now contains s3 and s6. Assume that s3 is selected from the
waiting set. The two successor states s4 and s5 will be generated. First, we will
check whether s4 has already been generated. As s4 has the compressed state
descriptor h4, which has no state numbers in its collision list, it is new, and it
is assigned state number 5, and an entry (4, a) is added to the backedge table.
Then we check if s5 is new. State s5 has the compressed state descriptor h3 and
a lookup in the state table yields the collision list consisting of states number
3 and 4. Using the backedge table, we obtain the two corresponding transition

sequences: (1, b) and (2, a)(1, a). Executing the occurrence sequences: s1
b
−→ s6

and s1
a
−→ s2

a
−→ s3 yields the full state descriptors for s3 and s6. By comparison

with the full state descriptor for s5 it is concluded that s5 is new and the state
table, the waiting set, and the backedge table are updated accordingly.

When state s3 has been processed, the waiting set contains the states s4,
s5, and s6. The processing of s4 and s5 does not result in any new states as
these two states do not have successor states. Consider the processing of s6.
We will tentatively denote the full state descriptor for the successor of s6 cor-
responding to s4 by s′ as the algorithm has not yet determined that it is equal
to s4. State s′ has the compressed state descriptor h4 and a lookup in the
state table shows that we have a single state with number 5 stored for h4.
The backedge table is then used starting from state number 5 to obtain the
backedges (4, a), (2, a), and (1, a). Executing the corresponding occurrence se-

quence s1
a
−→ s2

a
−→ s3

a
−→ s4 yields full state descriptor for s4, and we conclude

that this full state descriptor is equal to s′, so s′ has already been visited and no
changes are required to the state table, the waiting set or the backedge table.

Figure 6.4 shows the situation after state s6 has been processed. The thick
edges correspond to the backedges stored in the backedge table. It can be seen
that the backedges stored in the backedge table determine a spanning tree
rooted in the initial state in all stages of the construction (Figs. 6.2–6.4).



6.4. The ComBack Algorithm 99

6.4 The ComBack Algorithm

The ComBack algorithm introduced in the previous section is listed in Algo-
rithm 5. The first part of the algorithm (lines 1–4) initialises the global data
structures. The global variable m is used to enumerate the states, i.e., assign
state numbers to states, and is initially 1 since the initial state is the first state
considered. The state table has an INSERT operation which takes a compressed
state descriptor and a state number and appends the state number to the col-
lision list for the compressed state descriptor. The waiting set stores pairs con-
sisting of a full state descriptor and its number. The state number is needed
when creating the backedge for a newly discovered state. The backedge table
stores pairs consisting of a state number and a transition label. The empty
backedge denoted ⊥ is initially inserted in the backedge table for state number
1 (the initial state).

The algorithm then executes a while-loop (lines 6–13) until the waiting set
is empty. In each iteration of the while-loop, a pair, (s, n′), consisting of a state
and its state number is selected from the waiting set (line 7) and each of the
successor states, s′, of s is examined (lines 8–13). Whether a successor state,
s′, is a newly discovered state is determined using the CONTAINS procedure,
which will be explained below. If s′ is a newly discovered state, m is incre-
mented by one to obtain the state number assigned to s′, the state number for
s′ is appended to the collision list associated with the compressed state descrip-
tor H(s′), and (n′, t) is inserted as a backedge in the backedge table for the state
s′ which has been given state number m.

The procedure CONTAINS (lines 15–19) is used to determine whether a
newly generated state s′ has been visited before. The procedure looks up
the collision list for the compressed state descriptor H(s′) for s′, and for each
state number, n, in the collision list it checks if s′ corresponds to n using
the MATCHES procedure. If a reconstructed state descriptor is identical to
s′, then s′ has already been visited and tt (true) is returned. Otherwise ff
(false) is returned. The procedure MATCHES (lines 21–22) reconstructs the
full state descriptor corresponding to n using RECONSTRUCT procedure and
returns whether it is equal to s′.

The procedure RECONSTRUCT recursively backtracks using the backedge
table to reconstruct the full state descriptor for state number n. The function
recursively finds the state number of a predecessor using the backedge table
and calculates the full state descriptor using the EXECUTE procedure. The
procedure exploits the convention that the initial state has number 1 to deter-
mine when to stop the recursion. The EXECUTE procedure (not shown) uses
the transition relation ∆ to compute the state resulting from an occurrence of
the transition t in the state s, i.e., if (s, t, s′) ∈ ∆ then EXECUTE(s, t) = s′. This

a

b

h1

h3

h4

s1

s2

b

s3

s4s5

b

s6

h3

h3

h2

1

5

4

2

3

6

a

a

h4

h3 3

h1 1

h2 2

4

5

6

(4, b)

1

2

3

(1, a)

(1, b)

4 (2, a)

5

6

(4, a)

Figure 6.4: After processing s6: state space explored (left), state table (middle),
and backedge table (right).



100 Chapter 6. The ComBack Method – Extending Hash Compaction

Algorithm 5 The ComBack Algorithm

1: m ← 1
2: STATETABLE.INIT(); STATETABLE.INSERT(H(sI ), 1))
3: WAITINGSET.INIT(); WAITINGSET.INSERT(sI , 1)
4: BACKEDGETABLE.INIT(); BACKEDGETABLE.INSERT(1,⊥)
5:

6: while ¬ WAITINGSET.EMPTY() do
7: (s, n′) ← WAITINGSET.SELECT()
8: for all t, s′ such that (s, t, s′) ∈ ∆ do
9: if ¬ CONTAINS(s′) then

10: m ← m + 1
11: STATETABLE.INSERT(H(s′), m)
12: WAITINGSET.INSERT(s′ , m)
13: BACKEDGETABLE.INSERT(m, (n′, t))
14:

15: proc CONTAINS(s′) is
16: for all n ∈ STATETABLE.LOOKUP(H(s′)) do
17: if MATCHES(n, s′) then
18: return tt
19: return ff
20:

21: proc MATCHES(n, s′) is
22: return s′ = RECONSTRUCT(n)
23:

24: proc RECONSTRUCT(n) is
25: if n = 1 then
26: return sI

27: else
28: (n′, t) ← BACKEDGETABLE.LOOKUP(n)
29: s ← RECONSTRUCT(n′)
30: return EXECUTE(s, t)

is well-defined since we have assumed that transitions are deterministic.

It can be seen that the ComBack algorithm is very similar to the standard
algorithm for state space exploration. The main difference is that determining
whether a state has already been visited relies on the CONTAINS procedure
which uses the backedge table to reconstruct the full state descriptors before
the comparison with a newly generated state is done. Since the backedge ta-
ble at any time during state exploration determines a spanning tree rooted in
the initial state for the currently explored part of the state space, we can recon-
struct the full state descriptor for any visited state. It follows that the ComBack
algorithm terminates after having explored all reachable states exactly once.

6.4.1 Space Usage.

The ComBack algorithm explores the full state space at the expense of using
more memory per state than hash compaction and by using time on recon-
struction of full state descriptors. We will now discuss these two issues in more
detail. First we consider memory usage. Let wN denote the number of bits
used to represent a state number, and let wH denote the number of bits in a
compressed state descriptor. Let |hi| denote the number of reachable states
mapped to the compressed state descriptor hi. The entry corresponding to hi



6.4. The ComBack Algorithm 101

in the state table can be stored as a pair consisting of the compressed state de-
scriptor and a counter of size wc specifying the length of an array of state num-
bers (the collision list). The total amount of memory used to store the states
whose compressed state descriptor is hi is therefore given by wH +wc + |hi| ·wN .
Considering all compressed state descriptors, the worst-case memory usage oc-
curs if all collision lists have length 1. This means that the worst-case memory
usage for the state table is:

|reach(sI)| · (wH + wc + wN )

We need at least wN = *log2 |reach(sI)|+ bits for storing unique numbers for
each state and wc = *log2 |reach(sI)|+ bits for storing the number of states in
each collision list. The worst-case memory usage for the elements in the state
table is therefore:

|reach(sI)| · (wH + 2 · *log2 |reach(sI)|+)

Consider now the backedge table. The entries can be implemented as an
array where entry i specifies the backedge associated with state number i. If
we enumerate all transitions, each transition in a backedge can be represented
using *log2 |T |+ bits. Each state number in a backedge can be represented using
*log2 |reach(sI)|+ bits. Observing that each reachable state will have one entry
in the backedge table upon termination this implies that the memory used for
the elements in the backedge table is given by:

|reach(sI)| · (*log2 |reach(sI)|+ + *log2 |T |+)

The above means that the total amount memory used for the elements in
the state table and the backedge table is in worst-case given by:

|reach(sI)| · (wH + 3 · *log2 |reach(sI)|+ + *log2 |T |+)

This is 3 · *log2 |reach(sI)|+ + *log2 |T |+ bits more per visited state than the
hash compaction method. The ComBack method and the hash compaction
method both store the full state descriptor for those states that are in the
waiting set, but the ComBack method additionally stores the state number
of each state in the waiting set which implies that the ComBack method uses
*log2 |reach(sI)|+ more bits per state in the waiting set. In reality, we will not
know |reach(sI)| in advance, and we will therefore use a machine word (w bits)
for storing state numbers. If we furthermore assume that we store each tran-
sition using a machine word and use a hash function generating compressed
state descriptors of size wH = w, we use a total of 5 ·w bits or 5 machine words
per state, corresponding to 20 bytes on a 32-bit architecture.

6.4.2 Time Analysis.

Let us now consider the additional time used by the ComBack algorithm for re-
construction of full state descriptors. Let ĥi = {s1, s2, . . . , sn} denote the states
that are mapped to given compressed state descriptor hi and assume that they
are discovered in this order. The first state s1 mapped to hi will not result in a
state reconstruction, but when state sj is discovered the first time it will cause



102 Chapter 6. The ComBack Method – Extending Hash Compaction

a reconstruction of the states s1, s2, . . . sj−1. This means that the number of
reconstructions caused by the first discovery of each of the states is given by:

|ĥi|
∑

j=1

(j − 1) =
|ĥi| · (|ĥi| − 1)

2

Any additional input edge of an already discovered state mapped to hi will
in worst-case cause all other discovered states to be regenerated. In the worst
case, the additional input edges are discovered after all |ĥi| states have been
discovered for the first time. Let in(s) denote the number of input edges for
a state s. The number of reconstructions caused by additional input edges is
then given by:

|ĥi| ·
∑

sj∈ĥi

(in(sj) − 1)

This means that the total number of state reconstructions for a given com-
pressed state descriptor hi is given by:

|ĥi| · (|ĥi| − 1)

2
+ |ĥi| ·

∑

sj∈ĥi

(in(sj) − 1) =
1

2
|ĥi|

2
−

|ĥi|

2
+ |ĥi| ·

∑

sj∈ĥi

in(sj) − |ĥi|
2

= −
1

2
|ĥi|

2
−

|ĥi|

2
+ |ĥi| ·

∑

sj∈ĥi

in (sj)

≤ |ĥi| ·
∑

sj∈ĥi

in (sj)

Let Ĥ = {H(s) | s ∈ reach(sI) } denote the set of compressed state descrip-
tors for the set of reachable states. The number of reconstructions used for the
entire state space exploration can be then be approximated by:

∑

hi∈Ĥ

|ĥi| ·
∑

sj∈ĥi

in (sj) ≤
∑

hi∈Ĥ



max
hk∈Ĥ

|hk| ·
∑

sj∈ĥi

in (sj)





= max
hk∈Ĥ

|ĥk| ·
∑

hi∈Ĥ

∑

sj∈ĥi

in (sj)

= max
hk∈Ĥ

|ĥk| ·
∑

s∈reach(sI)

in (s)

If we assume that we are using a good hash function for computing the
compressed state descriptors, then |ĥi| will in practice be small (at most 2 or
3). This means that the total number of state reconstructions will be close
to the sum of the in-degrees of all reachable states which is equal to number
of edges in the full state space. A poor hash function will cause many state
reconstructions which in turn will seriously affect the run-time performance of
the algorithm. In Sect. 6.6 we will show how to obtain a good hash function in
the context of CP-nets. If the backedge table is implemented as an array, we get
a constant look-up time, and a state can be reconstructed in time proportional
to the length of the path.

The above is summarised in the following theorem where {0, 1}wH denotes
the set of bit strings of length wH .



6.5. Variants and Extensions 103

Theorem 6.1 Let S = (S, T, ∆, sI) be a labelled transition system and H : S →
{0, 1}wH be a hash function. The ComBack algorithm in Algorithm 5 terminates
after having explored all reachable states of S exactly once. The elements in the
state table and the backedge table can be represented using:

|reach(sI)| · (wH + 3 · *log2 |reach(sI)|+ + *log2 |T |+) bits

The total number of state reconstructions during exploration is bounded by:

max
hk∈Ĥ

|ĥk| ·
∑

s∈reach(sI )

in (s)

6.5 Variants and Extensions

In this section, we sketch several variants of the basic ComBack algorithm.
Variants 1 and 2 are aimed at reducing time usage while Variants 3 and 4 are
aimed at reducing memory usage. Variant 5 shows how the ComBack method
can be used for modelling languages with non-deterministic transitions.

Variant 1: Path Optimisation

The amount of time used on reconstruction of a state s is proportional to the
length of the occurrence sequence leading to s stored in the backedge table.
If the state space is constructed in a breadth-first order, the backedge table
automatically contains the shortest occurrence sequences for reconstruction of
states. This is not the case, e.g., when using depth-first exploration. When
the state space is not explored breadth-first, it is therefore preferable to keep
the occurrence sequences in the backedge table short. As an example consider
Fig. 6.4. The occurrence sequences stored in the backedge table for s4 (state

number 5) is s1
a
−→ s2

a
−→ s3

a
−→ s4, which is of length 3. A shorter path s1

b
−→

s6
b
−→ s4 has however been found when s4 was re-discovered from s6. When

re-discovering s4 from s6, it is therefore beneficial to replace the backedge (4, a)

stored for s4 to (3, b) such that the shorter occurrence sequence s1
b
−→ s6

b
−→ s4 is

stored in the backedge table. It is easy to modify the algorithm to make such
simple path optimisations by storing the depth of each state in the waiting set
along with the full state descriptor and state number. The depth of a state s
stored in the waiting set is the length of the occurrence sequence through which
s was explored. Whenever a state s is removed from the waiting set in line 7 of
Algorithm 5, we obtain the depth d of s. By incrementing d by one, we obtain
the depth of each successor state s′ of s. If the RECONSTRUCT procedure (see
lines 24–30 in Algorithm 5) reconstructs s′ based on the backedge table using
an occurrence sequences of length greater than d + 1, then the backedge stored
for s′ should be changed to point to the state number of s since going via s
results in a shorter occurrence sequence. It is easy to see that the above path
optimisation shortens the occurrence sequences stored in the backedge table,
but it does not necessary yield the shortest occurrence sequences.

Variant 2: Caching of Full State Descriptors

Another possibility of reducing the time spent on state reconstruction is to
maintain a small cache of some full state descriptors for the visited states. As
an example, consider Fig. 6.4 and assume that we have cached state s3 (with
state number 4) during exploration. Then we would not need to do backtracking



104 Chapter 6. The ComBack Method – Extending Hash Compaction

for state number 4 when we generate state s5 – we can immediately see that
even though states s3 and s5 both have the compressed state descriptor h3, the
cached full state descriptor for s3 is not the same as the full state descriptor for
s5. Caching s3 also yields an optimisation when we generate state s4 (with state
number 5) when processing s6. In this case we would not have to backtrack all
the way back to the initial state, but as soon as we encounter state number
4 in the backtracking process we can obtain the full state descriptor for s3

(since it is cached), and it suffices to execute the occurrence sequence s3
a
−→ s4

to reconstruct the full state descriptor for s4. This shows that caching also
optimises state reconstruction for non-cached states. Another way to further
optimise backtracking is to re-order the states in the collision lists according
to some heuristics that attempt to predict which state is most likely to be re-
visited. A simple heuristic is to move a state number to the front of the collision
list every time we re-encounter it.

Variant 3: Backwards State Reconstruction

Some modelling languages, including PT-nets and CP-nets, allow transitions to
be executed backwards, i.e. we can obtain a function ∆−1 such that ∆−1(s′, t) =
s ⇐⇒ (s, t, s′) ∈ ∆. This can be used to execute occurrence sequences from
the backedge table backwards, starting from the full state descriptor of a newly
generated state s′, in order to determine whether s′ has already been visited.
This has two benefits. Firstly, we do not need to store the occurrence sequence
obtained from the backedge table in memory, but can just iteratively look up
a backedge in the backedge table and transform the current state using ∆−1.
Secondly, the backtracking process may stop early if we encounter an invalid
state. What qualifies as an invalid state depends on the modelling formalism.
A simple implementation for PT-nets and CP-nets is to consider states to be
invalid if there is a negative amount of tokens on a place (which may happen
when transitions are executed backwards).

Variant 4: Reconstruction of Waiting Set States

In the basic ComBack algorithm we store the full state descriptors for the
states in the waiting set. This may take up a considerable amount of mem-
ory. It can be observed that we do not actually need to store the full state
descriptor for states in the waiting set. It suffices to store the state number as
the full state descriptor can be reconstructed from the state number and the
backedge table when the state number is selected from the waiting set. This
reduces memory usage at the expense of having to make up to |reach(sI)| extra
reconstructions of states. We can alleviate this, however, if we do depth-first
exploration and cache at least the last state that was processed.

Variant 5: Non-deterministic Transition

For modelling languages with non-deterministic transitions we may have
(s, t, s′) ∈ ∆ ∧ (s, t, s′′) ∈ ∆ such that s′ /= s′′. This means that we may not have
a single unique state when executing occurrence sequences obtained from the
backedge table, and a state reconstruction procedure is required that operates
on sets of states. Consider the reconstruction of a visited state with number
n. From the backedge table we obtain (as before) a sequence of backedges
(nm, tm) · · · (ni, ti) · · · (n2, t2)(n1, t1) where n1 = 1 (the initial state). In the i’th
step of the reconstruction process when considering the backedge (ni, ti), now
have a set of states S1 containing the states that can be reached by executing



6.6. Experimental Results 105

the transition sequence t1t2ti−1 starting in the initial state. From this set we
obtain a new set of states S2 which is the set of states obtained by executing
ti in those states of S1 where ti is enabled. To reduce the size of the set S2 we
observe that S2 should only contain those states that has the same compressed
state descriptor as state number ni+1. The compressed state descriptor for
state number ni+1 can be obtained from the state table. With a good hash func-
tion H , this is expected to keep the size of the sets of states considered during
state reconstruction small.

Revised MATCHES and RECONSTRUCT procedures for Variant 5 are shown
in Algorithm 6. The RECONSTRUCT procedure is changed to return a set of
possible states matching the state number n, so MATCHES is changed to check
if s is among those (line 2). The only state corresponding to state number 1 is
the initial state (line 6). In line 8 we look up the number of a predecessor state
in the backedge table and recursively reconstruct all states that can match that
state (line 9). Then we calculate all possible successors of those states (line 10).
After that we check that the state number we are looking for, n, is actually in
the collision list of the compressed state descriptor of all calculated successors
(line 11), and finally return the result. The algorithm will work without the
weeding of states in line 11, but at the expense of considering larger state sets.

Algorithm 6 MATCHES and RECONSTRUCT procedures for Variant 5

1: proc MATCHES(n, s) is
2: return s ∈ RECONSTRUCT(n)
3:

4: proc RECONSTRUCT(n) is
5: if n = 1 then
6: return {sI}
7: else
8: (n′, t) ← BACKEDGETABLE.LOOKUP(n)
9: S1 ← RECONSTRUCT(n′)

10: S2 ← {s2 ∈ S | ∃s1 ∈ S1 : (s1, t, s2) ∈ ∆}
11: S3 ← {s2 ∈ S2 |n ∈ STATETABLE.LOOKUP(H(s2))}
12: return S3

6.6 Experimental Results

A prototype of the basic algorithm as described in Sects. 6.3 and 6.4 has been
implemented in CPN Tools [C1] which supports construction and analysis of
CPN models [91]. The algorithm is implemented in Standard ML of New Jersey
(SML/NJ) [159] version 110.60.

The STATETABLE is implemented as a hash mapping (using lists for han-
dling collisions) and the BACKEDGETABLE is implemented as a dynamic exten-
sible array. This ensures that we can make lookups and insertions in (at least
amortized) constant time. The collision list is implemented using SML/NJ’s
built-in list data type, which is a linked list (rather than an array with a
length). A more efficient implementation of the STATETABLE could be obtained
using very tight hashing [57]. This would allow us to remove some redundant
bits from the compressed state descriptor. We have implemented both depth-
first exploration (DFS) and breadth-first exploration (BFS).

The compressed state descriptors calculated by the hash function as well as
the state numbers are 31-bit unsigned integers as SML/NJ uses the 32nd bit for
garbage collection. The hash function used is defined inductively on the state



106 Chapter 6. The ComBack Method – Extending Hash Compaction

of the CPN model. In CP-nets, a state of the system is a marking of a set of
places. Each marking is a multi-set over a given type. We use a standard hash
function for each type. We extend this hash function to multi-sets by using
a combinator function, which takes two hash values and returns a new hash
value. We extend the hash functions on markings of places to a hash function of
the entire model by using the combinator function on the place hash functions.

We also implemented caching of full state descriptors as explained in
Sect. 6.5. The caching strategy used is simple: we use a hash mapping from
state numbers to full state descriptors, which does not account for collisions of
hash values. That way, if we allocate a hash mapping of, say, size 1000, we can
store at most 1000 full state descriptors in the cache. We have not implemented
re-ordering of states in the collision lists, as the collision lists have length at
most 2 (with two exceptions) for all our examples.

We use a test-suite consisting of three kinds of models: small examples,
medium-sized examples and real-life applications. In the first category, we
have three models: a model of the dining philosophers system (DP), a model
of replicating database managers (DB), and a model of a stop-and-wait net-
work protocol (SW). In the second category, we have a model of a telephone
system (TS). In the last category, we have a model of a protocol (ERDP) for
distributing network prefixes to gateways in a network consisting of standard
wired networks and wireless mobile ad-hoc networks [103]. All of the mod-
els are parametrised: DP by the number of philosophers, DB by the number of
database managers, SW by the number of packets transmitted and the capacity
of the network, TS by the number of telephones, and ERDP by the number of
available prefixes and the capacity of the network. We will denote each model
by its name and its parameter(s), e.g. DP22 denotes DP with 22 philosophers
and ERDP6,2 denotes the ERDP protocol with six prefixes and a network ca-
pacity of two.

We have evaluated the performance of the ComBack method without cache,
denoted by ComBack, and with cache of size n, denoted ComBack n. We have
compared the ComBack method with implementations of basic hash
compaction [172], bit-state hashing [76] by means of double hashing [38] which
uses a linear combination of two hash functions to compute, in this case, 15
compressed state descriptors. Instead of storing the compressed state descrip-
tors, like hash compaction, bit-state hashing uses the values to set bits in a
bit-array. Finally, we compare the ComBack method to standard state space
exploration of the full state space using a hash table for storing the full state
descriptors. For each model, we have measured how much memory and how
much CPU time was used to conduct the state space exploration. Memory is
measured by performing a full garbage collection and measuring the size of the
heap. This is done every 0.5 second or 40 states, whichever comes last. As
garbage collection takes time, the CPU time used is measured independently.
We have measured the time three times and used the average as the result.

Table 6.1 shows the results of the experiments. For each model (column 1)
and each explorationmethod (column 2), we show the number of nodes (states)
and arcs explored (columns 3 and 4). We also show the CPU time spent (in sec-
onds) and the amount of space (memory) used (in mega-bytes) for a depth-first
traversal (DFS) and a breadth-first traversal (BFS) of the state space (columns
5, 7, 10, and 12). In addition we show how much time and memory is used
relative to traversal using a standard exploration using DFS (columns 6, 8, 11,
and 13) and how much memory (in bytes) is used per state (columns 9 and 14).

We note that for each model, independent of the reduction technique, ei-
ther DFS performs better memory-wise than BFS or vice versa. For the more
realistic examples, TS and ERDP, DFS is slower than BFS. This is due to the



6.6. Experimental Results 107

Table 6.1: Experimental results

m
od

el

m
et

hod

nod
es

arc
s

DFS BFS

time space time space
sec % Mb % /state sec % Mb % /state

D
P

2
2

ComBack 39604 481625 2791 10337 23.0 97 608 59 219 9.8 42 260
ComBack 100 39604 481625 800 2963 23.0 98 610 56 207 9.9 42 261
ComBack 1000 39604 481625 98 363 23.6 100 625 57 211 10.6 45 281
Hash compaction 39603 481609 25 93 20.8 88 550 26 96 8.4 35 222
Bit-state 39604 481609 28 104 32.0 135 846 29 107 20.0 85 531
Standard 39604 481625 27 100 23.6 100 625 27 100 14.3 61 380

D
B

9

ComBack 59051 314947 60 214 4.5 10 80 63 225 11.9 28 212
ComBack 100 59051 314947 50 178 4.7 11 83 51 182 12.1 28 214
ComBack 1000 59051 314947 48 171 5.5 13 98 44 157 12.9 30 229
Hash compaction 59049 314937 25 89 1.4 3 25 27 96 10.1 23 179
Bit-state 59051 314947 29 104 12.3 28 218 33 118 21.3 49 379
Standard 59051 314947 28 100 43.3 100 769 28 100 43.4 100 770

D
B

1
0

ComBack 196832 1181001 286 44 15.4 9 82 307 48 43.1 25 230
ComBack 100 196832 1181001 247 38 15.6 9 83 264 41 43.3 25 231
ComBack 1000 196832 1181001 240 37 16.6 10 89 250 39 44.4 26 236
Hash compaction 196798 1180790 118 18 4.9 3 26 133 21 36.8 21 196
Bit-state 196832 1181001 138 21 12.3 7 66 152 24 46.3 27 247
Standard 196832 1181001 643 100 174.0 100 927 693 106 174.0 100 927

S
W

7
,4

ComBack 215196 1242386 115 319 17.5 41 85 115 319 20.1 47 98
ComBack 100 215196 1242386 68 189 17.6 41 86 100 278 20.2 47 98
ComBack 1000 215196 1242386 64 178 17.9 42 87 93 258 20.6 48 100
Hash compaction 214569 1238803 33 92 5.2 12 25 37 103 9.8 23 48
Bit-state 215196 1242386 41 114 12.3 28 60 46 128 18.3 43 89
Standard 215196 1242386 36 100 43.0 100 210 40 100 43.1 100 210

T
S

5

ComBack 107648 1017490 3302 6115 51.4 84 500 103 191 17.6 29 172
ComBack 100 107648 1017490 933 1728 51.4 83 501 102 189 17.7 29 172
ComBack 1000 107648 1017490 207 383 51.9 85 506 107 198 18.4 30 180
Hash compaction 107647 1017474 50 93 45.7 75 445 52 96 14.7 24 143
Bit-state 107648 1017490 58 107 55.4 90 540 62 115 25.8 42 251
Standard 107648 1017490 54 100 61.2 100 596 57 106 45.0 73 438

E
R

D
P

6
,2

ComBack 207003 1199703 986 865 29.1 33 147 867 761 35.7 41 181
ComBack 100 207003 1199703 259 227 29.0 33 147 481 422 35.8 41 181
ComBack 1000 207003 1199703 205 180 29.6 34 150 402 353 36.4 42 184
Hash compaction 206921 1199200 106 93 5.1 6 26 114 100 18.6 21 94
Bit-state 207003 1199703 123 108 12.3 14 62 135 118 27.3 31 138
Standard 207003 1199703 114 100 87.4 100 443 131 115 88.5 101 449

E
R

D
P

6
,3

ComBack 4277126 31021101 42711 - 572.3 - 140 65354 - 708.1 - 174
ComBack 100 4277126 31021101 18043 - 571.2 - 140 - - - - -
ComBack 1000 4277126 31021101 23084 - 571.7 - 140 - - - - -
Hash compaction 4270926 30975030 3341 - 113.5 - 28 20512 - 403.6 - 99
Bit-state 4277125 31021091 3732 - 12.1 - 3 17481 - 347.9 - 85
Standard - - - - - - - - - - - -

fact that the models resemble real systems and have more complex behaviour,
which leads to very long occurrence sequences in the backedge table, and thus
impacts the performance of the ComBack method. If we instrument the Com-
Back method with even a small cache when using DFS, or if we use BFS, pro-
cessing is much faster for realistic examples. We see that the ComBack method
uses quite a bit more memory than the 5 machine words predicted in the pre-
vious section. One cause for this is that the calculation in Sect. 6.4 did not take
the WAITINGSET into account and only considered the elements of the state
table and the backedge table, not the tables themselves. Furthermore, SML is
not very memory-efficient, doubling usage. We also note that the standard ex-
ploration as well as the ComBack method using BFS were not able to complete
due to lack of memory for the ERDP6,3 model. The hash compaction bit-state
hashing were also not able to explore all states for this example (as can be seen
in the nodes column of Table 6.1). This means we are comparing methods guar-
anteeing full coverage with methods that do not, so while the hash compaction
and bit-state hashing methods seem to perform well, they do so at a cost.



108 Chapter 6. The ComBack Method – Extending Hash Compaction

Figure 6.5 shows charts depicting memory and time usage relative to stan-
dard DFS exploration (i.e. one chart for columns 5 and 7 and another chart
for columns 10 and 12). These charts allow us to better understand how the
different exploration methods perform compared to each other, independent of
the example. We see that the values fall into 7 rectangles corresponding to 6
different exploration methods and an abnormal experiment. Rectangle 1: stan-
dard exploration; all results are near 100% on both axes, showing that when
we store full state descriptors in a hash table, it does not matter whether we
use DFS or BFS. Rectangle 2: hash compaction; all are near 100% on the time
axis and between 2% and 100% (DFS) or 20% and 40% (BFS) on the mem-
ory axis, showing that hash compaction uses as much time as storing the full
state descriptors, but significantly less space. Rectangle 3: bit-state hashing;
all are near 100% time-wise, but slightly higher than 1 and 2 (this is probably
because we have to calculate two hash values instead of just one). All range
between 15% and 150% memory-wise. The bit-state hashing method consis-
tently uses 12.5 mega-bytes plus the size of the waiting set, so it performs well
memory-wise on models with large state spaces, but performs poorly on models
with small state spaces. This means that memory optimisations are possible,
but customisation is required by the user. All the show models are reason-
able large, leading to reasonable performance of bit-state hashing. Rectangle
4: ComBack without cache; all are above 150% time-wise and between 10% and
100% (DFS) or 25% and 40% (BFS) memory-wise. Time is also better bounded
in the BFS results. This indicates that ComBack without cache yields a reduc-
tion (it is never above 100%), and when using BFS we have better control of
the time and memory used. DFS makes it possible to save more memory, but
can be very costly time-wise, and sometimes we do not save any memory at
all (e.g. in the Dining philosophers example, where we can end up with most
of the state space in the waiting set). Rectangles 5+6: ComBack with cache;
these use slightly more memory but less time than 4, in particular in the DFS
case. More cache yields more memory and less time used, but the differences
are not that large, and even a small cache yields great optimizations in time
compared to the ComBack method with no cache at all. Rectangle 7: DB10;
these points fall outside of all the other boxes. Inspection of the data in Ta-
ble 6.1 shows that the DB10 example has irregular behaviour, as exploration
using the standard exploration is slow as a full state descriptor for this model
is large, and thus the SML/NJ garbage collector is invoked often. This yields a
performance penalty and causes all other experiments, as they are relative to
the standard exploration, to fall outside the other boxes. ERDP6,3 is not shown
as the standard exploration was unable to terminate.

All of the shown experiments have been performed using a hash-function
generating 31-bit compressed state descriptors. We have also tested the
method using a hash function generating 62-bit compressed state descriptors,
but have not shown those results, as the time usage is the same but more
memory is consumed, as the 31-bit hash function causes few collisions. We
have verified the quality of the hash-function by calculating the lengths of the
collision lists for all examples. The worst case is example SW7,4, where there
are 214009 collision lists of length 1, 592 lists of length 2 and 1 list of length
3, so 99.7 % of the collision lists have the minimum length. It also means that
hash compaction misses at least 1 ·592+2 ·1 = 594 states due to hash collisions.



6.7. Conclusions and Future Work 109

1

7

6

5

4

3
2

 10
 1000

lo
g(

tim
e 

%
)

log(memory %)

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

 10 1

 100000

 10000

 1000

 100

 100

1

7

6

5

4

3

2

 10

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

lo
g(

tim
e 

%
)

 1000 100 10

 1000

 100

log(memory %)

Figure 6.5: Time and memory usage for the various reduction techniques using
DFS exploration (top) and BFS exploration (bottom). Values are relative to
corresponding values for standard depth-first exploration.

6.7 Conclusions and Future Work

In this paper we have presented the ComBack method for alleviating the state
explosion problem. The basic idea of the method is to augment the hash com-
paction method with a backedge table that makes it possible to reconstruct full
state descriptors and ensure full coverage of the state space. We have made
a prototype implementation of the method in CPN Tools and our experimental
results demonstrate that the method (as expected) uses more time and memory
than hash compaction, but less memory than ordinary state space exploration.

The advantage of the ComBack method is that it guarantees full coverage of
the state space, unlike related methods such as hash compaction and bit-state



110 Chapter 6. The ComBack Method – Extending Hash Compaction

hashing. From a practical viewpoint one could therefore use methods such as
hash compaction in early phases of a verification process to discover errors, and
when no further errors can be detected, the ComBack method could be used for
formal verification of properties.

In this paper we have not discussed verification of properties using the Com-
Back method. It can be observed that the method explores the full state space
without mandating a particular exploration order. Furthermore, the state re-
construction that occurs when checking whether a state has already been vis-
ited can be made fully transparent to the verification algorithm being applied
in conjunction with the state space exploration. This makes the method com-
patible with most on-the-fly verification algorithms (e.g., verification of safety
properties and on-the-fly LTL model checking [166]). The ComBack method is
also compatible with off-line verification algorithms such as CTL model check-
ing [106] since the backedge table allows the reconstruction of any of the full
state descriptors which in turn allows the forward edges between states to be
reconstructed. Alternatively, we can simple store the forward edges in an ad-
ditional table during state space exploration.

The ComBack method opens up several areas for future work. One topic
is the integration of verification algorithms as sketched in the previous para-
graph. Future work also includes implementation of the additional variants
presented in Sect. 6.5, and the development and evaluation of caching strate-
gies and organisation of collision lists to reduce the time spent on state re-
construction. It would also be interesting to compare the ComBack method to
other complete techniques such as state caching [60]. Another important topic
is to explore the combination of the ComBack method with other reduction
methods. For this purpose, partial-order methods [134, 160] appear particu-
larly promising as they reduce the in-degree of states which in turn will lead
to a reduction in the number of state reconstructions.


