Chapter 7

The BRITNeY Suite Animation Tool

The paper The ComBack Method — Extending Hash Compaction with Back-
tracking presented in this chapter has been published as a conference pa-
per [T3]. The conference paper is a shortened and less technical version of
the workshop paper [C6]. The BRITNeY Suite, described in these papers, is
available from the BRITNeY Suite homepage [C2].

[T3] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool.
In Proc. of ICATPN’06, volume 4024 of LNCS, pages 431-440. Springer-
Verlag, 2006.

[C2] M. Westergaard. BRITNeY suite website. Online wiki.daimi.au.dk/
britney/.

[C6] M. Westergaard and K.B. Lassen. Building and Deploying Visualizations
of Coloured Petri Net Models Using BRITNeY animation and CPN Tools.
In Proc. of Sixth CPN Workshop, volume PB-576 of DAIMI, pages 119—
136, 2005.

The version presented here is identical to the conference paper except for minor
typographical changes.

111

7.1. Introduction 113

The BRITNeY Suite Animation Tool

Michael Westergaard and Kristian Bisgaard Lassen

Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,
Email: {mw,k.b.lassen}@daimi.au.dk

Abstract

This paper describes the BRITNeY suite, a tool which enables users to
create visualizations of formal models. BRITNeY suite is integrated with
CPN Tools, and we give an example of how to extend a simple stop-and-
wait protocol with a visualization in the form of message sequence charts.
We also show examples of animations created during industrial projects to
give an impression of what is possible with the BRITNeY suite.

7.1 Introduction

Colored Petri nets (CP-nets or CPN) [91] have proved their usefulness in model-
ing and understanding complex systems [10,103,112,142], e.g., for verification
of existing behavior or requirements engineering of needed behavior.

However, when using CP-nets, only people familiar with the formalism are
able to truly understand the model of the system. A domain expert may under-
stand a CP-net, when introduced to CP-nets in general and when the particular
CP-net is explained by the model developer, but the domain expert is seldom
able to talk back, say precisely what is wrong with the model, and offer sug-
gestions to fix the model of the system, because of lack of technical expertise
with the formalism. CP-net models of systems are prone to errors if they can
not be fully understood and validated by someone with domain knowledge. The
contribution of the BRITNeY! suite animation tool is to give a visualization of
the state and actions of a CP-net so the domain expert can validate the model.

In this paper we present the BRITNeY suite [C2] which introduces an an-
imation layer for CP-nets. BRITNeY suite provides a uniform way to imple-
ment, integrate, and deploy visualizations of CP-nets and has a pluggable ar-
chitecture which makes it possible to write customized plug-ins to animate the
model in addition to more than a dozen predefined plug-ins. The BRITNeY
suite has already been used successfully to animate a network protocol [T4],
to animate a workflow process in a bank for the purpose of requirements en-
gineering [94] and to visualize how patient, nurse and doctor work together
with a system that dispenses sedatives, again for the purpose of requirements
engineering [114].

Even though BRITNeY suite is designed with CPN Tools in mind, it is possi-
ble to integrate the tool with any executable formalism as the interface to CPN
Tools is based on well-known public standards. For example the tool has been
used successfully to visualize the execution of a timed automaton [7] model
as well as the reachability graphs of systems created using a subset of the 7-
calculus [127], bigraphical reactive systems [125], finite and timed automata,

1An abbreviation for Basic Real-time Interactive Tool for Net-based animation.

114 Chapter 7. The BRITNeY Suite Animation Tool

¢ invokes

changes
Controller Model |observes View

alerts

Figure 7.1: Architectural overview of the model-view-controller design pattern.

and Coloured Petri nets. Also goto-graphs of Java programs have been visual-
ized using the BRITNeY suite.

The paper is structured as follows. In Sect. 7.2 we give a brief overview
of the architecture of the BRITNeY suite. In Sect. 7.3 we demonstrate how to
add a message sequence chart visualization to a CP-net of a simple stop-and-
wait protocol. Sect. 7.4 contains some example visualizations created as part
of industrial projects. In Sect. 7.5 we mention related work and outline some
of the new features planned for BRITNeY suite.

7.2 Architectural Overview

A well-known design pattern from the object-oriented world is the model-view-
controller (MVC) design pattern [54]. In the MVC design pattern, three par-
ticipants collaborate to provide the implementation of an application, namely
a model, a view, and a controller, see Fig. 7.1. The model contains the state
of the system, the view is a (graphical) representation of the current state of
the model, and the controller implements the behavior of the system. The view
may initiate actions in the controller.

The idea behind the BRITNeY suite is to use a CP-net (or any other formal
executable model) to model the state and behavior of the system (the model
and controller), and use BRITNeY suite for visualizing the system (view). This
division is natural as places of CP-nets are used to model the state of a system
and transitions the behavior.

In Fig. 7.2, we see how BRITNeY suite is integrated with CPN Tools [33]
to provide simulation-based visualizations and animations. CPN Tools itself is
split into two components, an editor and a simulator. The animation tool, in
the right part of the figure, communicates with CPN Tools using a standard Re-
mote Procedure Call protocol, called XML-RPC [170], in order to allow vendors
of other tools to directly integrate their tools with BRITNeY suite. BRITNeY
suite uses plug-ins to make the actual visualizations, which makes it easy to
create your own animations. 15 plug-ins are currently available in the tool.
Table 7.1 lists each plug-in with a short description. Over time, more plug-ins
will be added.

BRITNeY does not contain a fixed set of plug-ins as plug-ins can be added
and removed, so stubs are generated on-the-fly as needed by using the reflec-
tion mechanism in Java to inspect the signatures of the plug-ins. The stubs
make sure that values are passed correctly to the appropriate Java object’s
method and takes care of passing the return value back to the caller. Stubs are
generated automatically by the stub generator component of BRITNeY suite.
The stubs are injected into CPN Tools and are available as regular functions
in the inscription language of CPN Tools, namely Standard ML (SML) [126],
which allows the modeler to use the animation plugins anywhere SML expres-
sions are allowed.

7.3. Using BRITNeY to Generate Message Sequence Charts 115

T i !
! CPN Tools i $ce“°?’ R
| i Animation
CPN CPN : plugins
editor simulator |
i BRITNeY
() ! suite

Animation i 7Stub

' enerator
stubs 71 !
XML-RPC ' L XML-RPC
client i server

Figure 7.2: A more detailed view of the integration of the animation tool with
CPN Tools.

Table 7.1: Plug-ins for the BRITNeY suite. The first group of plug-ins is for
creating various charts, the second group is for displaying directed graphs, the
third group is for interacting with a user and the final group contain plug-ins
that do not fit in any group.

Name Description

AreaChart For visualizing data values by filling the area below them
GanttChart For drawing Gantt charts

Histogram For drawing histograms

MSC For drawing message sequence charts

PieChart For drawing pie charts

PieChart3D For drawing 3D pie charts

StepChart Similar to a histogram

XYChart For visualizing data values as points

Graph For drawing 2D graphs
Graph3D For drawing 3D graphs

GetString For getting short text-messages from the user

ShowString Display short text-messages to the user

DataStore Storage for simple data-types

Report Nice presentation of data

SceneBeans For displaying and interacting with a SceneBeans [149] animation

The modeler will often want to update the visualization when a transition
occurs. This is done by calling the stubs in code segments that are special
transition inscriptions allowed by CPN Tools. A code segment is executed when
the transitions it belongs to occurs. It consists of input, output, and action
parts. The input and output parts make it possible to receive input from the
model and to provide situmli back to the model respectively. This makes it
possible to, e.g., invoke a stub with values dictated by tokens and to generate
new tokens from the result of executing the stub.

7.3 Using BRITNeY to Generate
Message Sequence Charts
In this section we will describe how to show a simulation of a CP-net as a

message sequence chart (MSC), i.e. generate a chart which displays the simu-
lation of the CP-net in terms of events being passed between processes. This is

116 Chapter 7. The BRITNeY Suite Animation Tool

PACKET

out \Jid.data) | send
Buffer Data

1 (1,"BRITNeY")++

(id,data)

PACKET

1:(2," is coo")++ id (id,data)
1°(3,"nnnmy 11 d 191
Receive Receive
Data Id
D id+1 D
id| |id+1

Receive
Ack

PACKET

Figure 7.3: CP-net of a stop-and-wait protocol.

instead of, e.g., in CPN Tools where simulation is shown as enabling of transi-
tions, and tokens being consumed and generated when transitions occur. The
description is fairly high-level, and a more detailed and technical description
can be found in [C6], but the reader is assumed to have basic knowledge of
object oriented programming and an ability to read Java and SML code.

7.3.1 Model

The model that we will use in this paper is a very simple stop-and-wait protocol
as seen in Fig. 7.3. The model consists of three parts: 1) A sender who can Send
Data from the Out Buffer with a packet number from Next Id. Also the sender
can Receive Ack thereby updating the token on Next Id. 2) A network that can
Drop packets that are sent to the receiver from place Network 1. Network 2
contains acknowledgments that the receiver is sending back to the sender. 3)
The receiver can Receive Data and update the Receive Id that the next packet
must have.

7.3.2 Adding the MSC primitives in CPN Tools

MSCs are well-known to protocol engineers, and it is therefore a good idea to
be able to present the execution of a CP-net as an MSC. The first part of an
MSC that is generated from the model in Fig. 7.3 can be seen in Fig. 7.4. The
Sender process corresponds to the sender part of the CP-net, Network process to
the network part of the CP-net and Receiver process to the receiver part of the
CP-net. In the following we will describe how to extend the model in Fig. 7.3
with primitives to draw this MSC.

In Listing 1 we show the signature of the Java plug-in for the MSC class. It
contains functions for adding new process, adding events between processes,
and adding events internal to a single process. This will, as explained in
Sect. 7.2, be translated, by the stub generator, to a corresponding SML rep-
resentation. In the following we show how to apply SML primitives to the
CP-net to call these methods.

Listing 1 Java signature of the MSC object.

1 void addProcess(String name);
2 void addEvent(String from, String to, String name);
3 void addInternalEvent(String process, String name);

7.4. Visualization Examples 117

[Sender } [Network } [Receiver }

"BRITNeY"

Drop
"BRITNeY"

"BRITNeY"

Ack 1

"BRITNeY"

Ack 1

" is coo"

Figure 7.4: First part of an MSC generated from the model in Fig. 7.3

Listing 2 Initialization of the MSC view.

1 structure msc = MSC(val name = "Stop-and-Wait Protocol");
2 val _ = msc.addProcess("Sender");

s val _ = msc.addProcess("Net");

+ val _ = msc.addProcess("Receiver");

To set up the MSC view we need to add some declarations to the CP-net. In
CPN Tools we add declarations as in Listing 2. Line 1 initializes an MSC object
with the name ”Stop-and-Wait Protocol”. Lines 2—4 creates the three processes
as seen in Fig. 7.4; i.e. Sender, Network, and Receiver.

Next we need to extend our model from Fig. 7.3 to generate the events that
correspond to those in Fig. 7.4.

In Fig. 7.5 we see how the methods from Listing 1 are incorporated into the
CP-net. The idea is that we want to generate an event in the MSC when one of
the transitions in the model occurs. We did this as follows: When Send Data in
the CP-net occurs we add an event from Sender to Network in the MSC, where
the label is the same as the data being sent, i.e. "data” where data is bound from
the string in the packet from Out Buffer. When Drop in the CP-net occurs we
add the internal event Drop on the process Network in the MSC. When Receive
Data in the CP-net occurs, an event is added from Network to Receiver in the
MSC, with label stating what data is received (the label is "data”, where data
is bound from the string in the packet from Network 1) and also, an event from
Receiver to Network in the MSC, with an acknowledgment with the received
packet number as label; the label is Ack i where i is the integer in the packet
bound in the occurence of Receive Data. Finally, when Receive Ack occurs, an
event is sent from Network to Sender in the MSC with the acknowledgment as
the label; here the label is again Ack i.

7.4 Visualization Examples

This section will give a number of examples of practical use of BRITNeY suite.
We will not describe the examples in detail, but just refer to papers with de-
tailed descriptions.

In Fig. 7.6, we see an animation created to visualize an interoperability pro-
tocol for mobile ad-hoc networks [T4]. The protocol is used to ensure that the
mobile ad-hoc nodes (the laptops) can communicate with the stationary host,
even when on the move. The domain-specific GUI makes it possible for the

118 Chapter 7. The BRITNeY Suite Animation Tool

input (data);

output ();

action

msc.addEvent ("Sender","Network","\""~data”"\"");

input ();
output ();

input (id); action

output (); msc.addInternalEvent(input (id,data);

action "Network", "Drop"); output ();

msc.addEvent(action
"Network", msc.addEvent
"Sender", ("Network","Receiver","\""~data~"\"");
"Ack " /\(Int toString id)); msc.addEvent

("Receiver","Network","Ack "~ (Int.toString id));

Figure 7.5: Model from Fig. 7.3 with MSC primitives

.
AHN(3) -> 3ffe:100:3:406::3 " ®DNS request/reEIy/update
AHN(4) -> 3ffe:100:3:405::4 y, OGateway advertisement
AHN(5) -> 3ffe:100:3:406::5 / Data packe
i
0 0 00
[

l” : ARy Ba01::3
el Hs Bg
?#2:51?)81:%2401-:1 3ffe:100:3:405::1

00
[
0 Ad-hoc Nod

1 C e 4
\ 3ffe:100:3:405::4
| 3ffe:100:3:406::4
|-| 0 1
Ad hoc Node 3 [|
E—— 23ffe 100 34083 J
H t1 Gatewa /
Ad-hoc Node 5
3ffe:100:3:401,:2 sffe. 1003308 3ffe:100:3:406::5

3ffe:100:3:405::5 .
-~ —

Figure 7.6: A visualization of an interoperability protocol for mobile ad-hoc
networks.

user to observe the behavior of the system as packets, visualized by colored
dots, flow along the network and to provide stimuli to the protocol by drag-
ging and dropping the laptops to indicate the node movements. The use of an
underlying formal model can be completely hidden when experimenting with
the prototype. The domain-specific GUI has been used in the project both in-
ternally during protocol design and externally when presenting the designed
protocol to management and protocol engineers not familiar with CPN model-
ing.

In Fig. 7.7 we see the domain specific animation based on the SceneBeans
plug-in. This was used in [94] for requirements engineering of a new workflow
system. The goal of the workflow was to support the handling of a blanc loan
applications.

The animation is constructred as follows: There are always two bank assis-
tants, Ann and Bill. Up to two customers can be present, in the figure only Mr.
Smith is present. A bank manager, Mr. Banks, is always present. The balls
represent blanc loan requests and the position of it shows who is responsible
for the request. Whenever a transfer of responsibility occurs in the CP-net the
ball is moved from one person to another in the animation. One ball has a P
on it. This means that it is suspended, or parked, but can be picked up by
one of the bank employees when they have the time. The square is part of the
animation interface.

7.5. Related Work and Future Improvements 119

7 D ? 5 Finish simulation
§ (Ann + Mr. Smith)
A

Mr. Smith

— Mr Banks

Figure 7.7: SceneBeans animation used for requirements engineering.

Once in a while the user can interact with the animation by e.g., setting up
a loan for the customer when he wants to make a loan request, or setting the
status of a loan request on behalf of Ann, Bill or Mr. Banks to e.g. granted
or rejected. By not making the animation look like a normal prototype with
windows, menues etc., the focus of the user was on the workflow and not on
how the interface of the future system should be like.

7.5 Related Work and Future Improvements

BRITNeY suite supports adding animations to CPN models by annotating
transitions with function calls, which are executed whenever the transition
occurs. In the following, we outline how a number of other modeling tools facil-
itate visualization.

ExSpect [50], a tool for modeling based on CP-nets, allows the user to view
the state by associating widgets with the state of the model, and to asyn-
chronously interact with the model, also using simple widgets. In this way,
it is easy to create simple user interfaces that support displaying information,
but support for creating more elaborate animations is not readily available.

MiMic/CPN [141] makes it possible to animate models in DESIGN/CPN
[37], which is another tool for modeling using CP-nets. CPN models are an-
imated by MIMIC/CPN by using function calls that are executed whenever a
transition of the CP-net occurs. The animations are drawn using an application
that resembles traditional drawing programs. Input from the user is possible
by showing a modal dialog, where the simulation of the model is stopped while
the user is expected to input information. It is also possible to make click-able
regions, and the model can then query if one of these has been clicked. Another
approach, which is taken by the CoMMS/CPN [53] library for DESIGN/CPN
and CPN Tools, is to provide a TCP/IP abstraction, allowing the user to code
the user interface in any language and use RPC to communicate with it.

LTSA [116], a tool for modeling using timed labeled transition systems, al-
lows users to animate models using the SceneBeans library. In LTSA anima-
tions are tied to the models by associating each animation activity with a clock;
resetting a clock corresponds to starting an animation sequence. The anima-
tion sequence or a user with his mouse can then send events which correspond
to the progress of the timer.

PNVis [99] is an add-on for the Petri Net Kernel [169], a highly modular
tool for editing Petri nets. PNVis associates tokens with 3D objects and certain
places with locations in a 3D world. Moving tokens corresponds to moving the
associated object in the 3D world. PNVis is suitable for modeling physical sys-

120 Chapter 7. The BRITNeY Suite Animation Tool

tems, but not so applicable for creating prototypes of software or requirements
engineering.

Using some of these animation tools/libraries, animation is integrated with
the modeling formalism, such as the use of timers in LTSA or the ability to
view or change the marking of places in ExSpect. Some libraries are easy to
extend, such as animations in LTSA, as the SceneBeans library allows users
to easily extend it with new animation primitives. Also, animations created
using COMMS/CPN can easily be extended, as the “animation” is just a custom
(e.g. Java) application. Some libraries make it easy to design animations, such
as ExSpect and MiMIC/CPN, which both provide a graphical user interface
to design animations. The approach of the current version of BRITNeY suite
resembles a combination of MIMIC/CPN and COMMS/CPN, as the animation is
driven by function calls associated with transitions to an external application.
The main feature offered by BRITNeY suite from a user point of view is thus
compatibility with CPN Tools (rather than the discontinued DESIGN/CPN) and
platform-independence. BRITNeY suite also makes it easy to extend the tool
using simple Java classes. From a developer point of view, BRITNeY provides
good foundations for allowing closer integration with the model by allowing
parts of the animation to inspect and modify tokens on fusion places of the CPN
model, much like how widgets are associated with places in ExSpect. This is
an important part of future work.

An important new feature of BRITNeY suite is that it is possible to deploy
animations in a way that allows even non-technical users to download and
experiment with the animation. Another part of the future work is to make
this process even easier by adding a wizard to take care of all the details.

BRITNeY suite has already proven itself useful in real projects, and has
already been used in several industrial projects.

