Chapter 8

Model-based Prototyping of an
Interoperability Protocol for Mobile
Ad-hoc Networks

The paper Model-based Prototyping of an Interoperability Protocol for Mobile
Ad-hoc Networks presented in this chapter has been published as a conference
paper [T4].

[T4] L.M. Kristensen, M. Westergaard, and P.C. Ngrgaard. Model-based Pro-
totyping of an Interoperability Protocol for Mobile Ad-hoc Networks. In
Proc. of IFM’05, volume 3771 of LNCS, pages 266—286. Springer-Verlag,
2005.

The version presented here is identical to the conference paper except for minor
typographical changes.

121

8.1. Introduction 123

Model-based Prototyping of an
Interoperability Protocol for Mobile Ad-hoc
Networks

L. M. Kristensen* = M. Westergaard®* P. C. Ngrgaard*

*Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,
Email: {kris,mw}@daimi.au.dk

tEricsson Danmark A/S, Telebit,
Skanderborgvej 222, DK-8260 Viby J, Denmark,
Email: Peder.Chr.Norgaard@ericsson.com

Abstract

We present an industrial project conducted at Ericsson Danmark A/S,
Telebit where formal methods in the form of Coloured Petri Nets (CP-nets
or CPNs) have been used for the specification of an interoperability pro-
tocol for routing packets between fixed core networks and mobile ad-hoc
networks. The interoperability protocol ensures that a packet flow between
a host in a core network and a mobile node in an ad-hoc network is al-
ways relayed via one of the closest gateways connecting the core network
and the mobile ad-hoc network. This paper shows how integrated use of
CP-nets and application-specific visualisation have been applied to build a
model-based prototype of the interoperability protocol. The prototype con-
sists of two parts: a CPN model that formally specifies the protocol mech-
anisms and a graphical user interface for experimenting with the protocol.
The project demonstrates that the use of formal modelling combined with
the use of application-specific visualisation can be an effective approach to
rapidly construct an executable prototype of a communication protocol.

Keywords: Model-driven prototyping; animation; Coloured Petri Nets; mo-
bile ad-hoc network.

8.1 Introduction

The specification and development of communication protocols is a complex
task. One of the reasons is that protocols consist of a number of independent
concurrent protocol entities that may proceed in many different ways depend-
ing on when, e.g., packets are lost, timers expire, and processes are scheduled.
The complex behaviour makes the design of protocols a challenging task. Pro-
tocols operating in networks with mobile nodes and wireless communication
present an additional set of challenges in protocol engineering since the or-
chestration of realistic scenarios with many mobile nodes is impractical, and
the physical characteristics of wireless communication makes reproduction of
errors and scenarios almost impossible.

TSupported by the Danish Natural Science Research Council.

124 Chapter 8. Model-based Prototyping of an Interoperability Protocol

We present a case study from a joint research project [101] between the
Coloured Petri Nets Group [34] at University of Aarhus and Ericsson Dan-
mark A/S, Telebit [47]. The research project applies formal methods in the
form of Coloured Petri Nets (CP-nets or CPNs) [91, 102] and the supporting
CPN Tools [33] in the development of Internet Protocol Version 6 (IPv6) [82]
based protocols for ad-hoc networking [137]. An ad-hoc network is a collec-
tion of mobile nodes, such as laptops, personal digital assistants, and mobile
phones, capable of establishing a communication infrastructure for their com-
mon use. Ad-hoc networking differs from conventional networks in that the
nodes in the ad-hoc network operate in a fully self-configuring and distributed
manner, without any preexisting communication infrastructure such as base
stations and routers.

CP-nets is a graphical discrete-event modelling language applicable for con-
current and distributed systems. CP-nets are based on Petri nets [143] and the
programming language Standard ML (SML) [159]. Petri nets provide the foun-
dation of the graphical notation and the basic primitives for modelling concur-
rency, communication, and synchronisation. The SML programming language
provides the primitives for the definition of data types, modelling data manip-
ulation, and for creating compact and parameterisable models. CPN models
are executable and describe the states of a system and the events (transitions)
between the states. CP-nets includes a module concept that makes it possi-
ble to organise large models into a hierarchically related set of modules. The
CPN modelling language is supported by CPN Tools and have previously been
applied in a number of projects for modelling and validation of protocols (see,
e.g., [61,64,103,132]).

The use of formal modelling languages such as CP-nets for specification
and validation of protocols is attractive for several reasons. One advantage of
formal models is that they are based on the construction of executable models
that make it possible to observe and experiment with the behaviour of the
protocol prior to implementation using, e.g., simulation. This typically leads
to more complete specifications since the model will not be fully operational
until all parts of the protocol have been at least abstractly specified. A model
also makes it possible to explore larger scenarios than is practically possible
with a physical setup. Another advantage of formal modelling is the support
for abstraction, making it possible to specify protocols while ignoring many
implementation details.

From a practical protocol engineering viewpoint, the use of formal mod-
elling also have some shortcomings. Even if the modelling language supports
abstraction and a module concept there is in most cases an overwhelming
amount of detail in the constructed model. This is a disadvantage, in par-
ticular when presenting and discussing the design with colleagues unfamiliar
with the applied modelling language. This means that a formal specification
in many cases is accompanied by informal drawings being developed in paral-
lel. The level of detail can also be a disadvantage when exploring the protocol
design via, e.g., simulation. Furthermore, even if a model is executable, it still
lacks the application- and domain-specific appeal of a conventional prototype.

The contribution of this paper is to present a model-based prototyping ap-
proach where formal modelling is integrated with the use of an animation GUI
for visualising system behaviour to address the shortcomings of formal mod-
elling discussed above. The approach has been applied to an interoperability
protocol for routing packets between nodes in a mobile ad-hoc network and
hosts in a fixed core network. Formal modelling is used for the specification of
the protocol mechanisms and an application- and domain-specific GUI [C2] is
added on top of the CPN model. The result is a model-based prototype in which

8.2. The Interoperability Protocol 125

,--""——‘_h\
" ®DNS request/reply/update

:100:3:405::3
:100:3:405::4 /e Gateway advertisement
:100:3:409’::_5__‘ / e Data packet

i 00 0o 0 P

| ||

" sor gféfite%a 31401 3 Ad-hoc Node 3

e: X T =
SR 100440111 3M16+100:3:405:1 3ffe:100:3:405::3

‘i 0.0 00

o <y n

way 2 /
00:3:401::4 Ad-hoc Node 5 A
00:3:406::1 3ffe:100:3:406::5

e

Host 1) Gate!
3ffe:100:3:401::2 3ffe:]
€ 3ffe:1

Figure 8.1: The hybrid network architecture.

the animation GUI makes it possible to observe the behaviour of the system
and provide stimuli to the protocol. The use of an underlying formal model
is fully transparent when experimenting with the prototype. The animation
GUI has been used in the project both internally during protocol design and
externally when presenting the designed protocol to management and protocol
engineers not familiar with CPN modelling.

The rest of the paper is organised as follows. Section 8.2 gives a brief in-
troduction to the network architecture and the interoperability protocol, and
Sect. 8.3 presents the model-based prototyping approach. Section 8.4 presents
selected parts of the CPN model specifying the interoperability protocol. Sec-
tion 8.5 presents the graphical animation user interface and package applied
in the project. Finally, Sect. 8.6 sums up the conclusions and presents related
work.

8.2 The Interoperability Protocol

Figure 8.1 shows the hybrid network architecture captured by the model-based
prototype. The network architecture consists of two parts: an IPv6 core net-
work (left) and a mobile ad-hoc network (right). The core network consists of a
Domain Name System (DNS) Server and Host 1. The mobile ad-hoc network con-
tains three mobile nodes (Ad-hoc Node 3-5). The core network and the mobile
ad-hoc network are connected by Gateway 1 and Gateway 2. A routing protocol
for conventional IP networks (such as OSPF [110]) is deployed in the core net-
work and a routing protocol for ad-hoc networks (such as OLSR [29]) is used in
the mobile ad-hoc network. The purpose of the interoperability protocol is to
ensure that packets are routed between hosts in the core network and nodes in
the mobile ad-hoc network via the closest gateway.

The gateways periodically announce their presence to nodes in the mobile
ad-hoc network by sending gateway advertisements containing an IPv6 ad-
dress prefix. The address prefixes announced by the gateways are assumed
to be unique, and the advertisement can be distributed to the ad-hoc nodes
using, e.g., flooding. The interoperability protocol does not rely on a specific
dissemination mechanism for the gateway advertisements. The interoperabil-
ity protocol generalises to an arbitrary number of gateways and mobile nodes.
Figure 8.1 shows the concrete setup represented in the model-based prototype.

126 Chapter 8. Model-based Prototyping of an Interoperability Protocol

IPv6 addresses [69] are 128-bit and by convention written in hexadecimal
notation in groups of 16 bits separated by colon (:). Leading zeros are skipped
within each group and a double colon (::) is a shorthand for a sequence of ze-
ros. Addresses consists of an address prefix and an interface identifier. Ad-
dress prefixes are written on the form z/y where z is an IPv6 address and
y is the length of the prefix. The mobile nodes in the ad-hoc network con-
figure IPv6 addresses based on the received gateway advertisements. In the
network architecture depicted in Figure 8.1, Gateway 1 is announcing the 64-
bit address prefix 3ffe:100:3:405::/64 and Gateway 2 is announcing the prefix
3ffe:100:4:406::/64. It can be seen from the labels below the mobile nodes that
Ad-hoc Node 3 and Ad-hoc Node 4 have configured IP addresses based on the
prefix announced by Gateway 1, whereas Ad-Hoc Node 5 has configured an IP
address based on the prefix announced by Gateway 2. For an example, Ad-hoc
Node 3 has configured the address 3ffe:100:3:405::3.

Each of the gateways has configured an address on the interface to the ad-
hoc network based on the prefix they are announcing to the ad-hoc network.
Gateway 1 has configured the address 3ffe:100:3:405::1 and Gateway 2 has con-
figured the address 3ffe:100:3:406::1. The gateways have also configured ad-
dresses on the interface to the core network based on the 3ffe:100:3:401::/64
prefix of the core network. Host 1 in the core network has configured the ad-
dress 3ffe:100:3:401::2 and the DNS server has configured the address
3ffe:100:3:401::1. The ad-hoc nodes may receive advertisements from both gate-
ways and configure an IPv6 address based on each of the prefixes. The reacha-
bility of the address prefixes announced by the gateways in the ad-hoc network
are announced in the core network via the routing protocol executed in the core
network.

The basic idea in the interoperability protocol is that the mobile nodes reg-
ister the IPv6 address in the DNS database which corresponds to the preferred
(closest) gateway. Updates to the DNS database relies on the Dynamic Domain
Name System Protocol [168]. The entries in the DNS database related to the
mobile nodes are shown to the upper left in Figure 8.1. For an example, it can
be seen that the entry for Ad-hoc Node 3 (AHN(3)) is mapped to the address
3ffe:100:3:405::3. When a mobile ad-hoc node discovers that another gateway
is closer, it will send an update to the DNS server causing its DNS entry to be
changed to the IPv6 address based on the prefix announced by the new gate-
way. It is assumed that the routing protocol executed in the mobile ad-hoc
network will provide the information required for a mobile node to determine
its distances to the currently reachable gateways. This means that when Host
1 wants to communicate, with e.g., Ad-hoc Node 3 and makes a DNS request to
resolve the IP address of Ad-hoc Node 3, the DNS server will return the IP ad-
dress corresponding to the prefix announced by the gateway closest to Ad-hoc
Node 3.

8.3 Model-based Prototyping Methodology

Figure 8.2 shows the approach taken to use CPN models to develop a prototype
of the interoperability protocol. A CPN model (lower left of Figure 8.2) has
been developed by modelling the natural language protocol specification [130]
(lower right) of the interoperability protocol. The modelling activity transforms
the natural language specification into a formal executable specification repre-
sented by the CPN model. The CPN model captures the network architecture
depicted in Figure 8.1 and the protocol mechanisms of the interoperability pro-
tocol, e.g., the periodic transmission of advertisements, the dynamic updates

8.4. The CPN Model 127

of the DNS database, and traffic flows between hosts in the core network and
nodes in the ad-hoc network. The resulting model can already be viewed as an
early prototype since it is possible to execute and experiment with the protocol
at the level of the CPN model. Since CP-nets is a graphical modelling language,
it is possible to observe the execution of the model directly on the CPN model.

The CPN model provides a very detailed view on the execution of the sys-
tem and it can be an advantage to provide a high-level way of interacting and
experimenting with the prototype. Furthermore, when presenting the protocol
design to people not familiar with CP-nets, it can be an advantage to be able to
demonstrate the prototype without directly relying on the CPN model but more
application and domain specific means. To support this, an animation GUI (top
left of Figure 8.2) has been added on top of the CPN model. This graphics visu-
alises the execution of the prototype using the graphical representation of the
network architecture previously shown in Figure 8.1. The graphics is updated
by the underlying CPN model according to the execution of the protocol.

In addition to observe feedback on the execution of the system in the ani-
mation GUI, it is also possible to provide input to the system directly via the
animation GUI. In the prototype, it is possible for the demonstrator (e.g., a
protocol engineer) to move the nodes in the ad-hoc network and to define traffic
flows from the host in the core network to the nodes in the mobile ad-hoc net-
work. The animation GUI has been implemented using a general visualisation
package and framework [C2] developed in the course of the project (see Sect.
8.4).

Altogether the approach makes it possible to explore and demonstrate the
prototype of the interoperability protocol based on the CPN model that formally
captures the design, but doing it in such a way that the use an underlying
formal model is transparent for the observer and the demonstrator.

8.4 The CPN Model

This section presents the CPN model specifying the interoperability protocol.
The complete CPN model is hierarchically structured into 18 modules. As the
CPN model is too large to be presented in full in this paper, we present only
selected parts of the CPN model. The aim is to show how the key aspects of
the interoperability protocol have been modelled. The key concepts of CP-nets

Explore and interact

Input

=
Feedback

Demonstrater

Modelling

CPN Model Protocol specification

Figure 8.2: Model-based prototyping approach.

128 Chapter 8. Model-based Prototyping of an Interoperability Protocol

1° (RECEIVE("AHN(3)"),{src="3ffe:100
1°("3ffe:100:3:401::3","3ffe:100:3:4 :3:405::1",dest="all-nodes multicast"
05::1","3ffe:100:3:405::") cont=GW_ADV(("3ffe:100:3:401::1","
Bffe:100:3:405::"))})++
1° (RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
< cont=GW_ADV(("3ffe:100:3:401::1","
GWConfig e 100:31405::"))})

1' (ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
| REQ("AHN(3)")})

AdHoc
Network

AdHoc
Network

Core
Network

Core
Network

AdHocNetworl

CoreNetwork Gateway2 CmdxPacket

CmdxPacket

1 ("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

GWConfig

Figure 8.3: System module — top-level module of the CPN model.

will be briefly introduced as we proceed with the presentation. The reader is
referred to [102] for a comprehensive introduction to CP-nets.

8.4.1 Model Overview

The module concept of CP-nets is based on the notion of substitution transitions
which have associated submodules describing the compound behaviour repre-
sented by the substitution transition. A submodule of a substitution transition
may again contain substitution transitions with associated submodules. Fig-
ure 8.3 shows the top level module of the CPN model which is composed of three
main parts represented by the rectangular substitution transitions CoreNet-
work (left), Gateway1 and Gateway?2 (middle), and AdHocNetwork (right). The
substitution transition CoreNetwork and its submodules model the core net-
work, the substitution transition AdHocNetwork and its submodules model the
mobile ad-hoc network, and the submodules of the two Gateway substitution
transitions model the operation of the gateways connecting the core network
and the mobile ad-hoc network. The text in the small rectangular box attached
to each substitution transition gives the name of the associated submodule.

The state of a CPN model is represented through places (drawn as ellipses).
There are four places in Fig. 8.3. The places CoreNetwork and AdHocNetwork
are used for model modelling the packets in transit on the core network and
ad-hoc network, respectively. The state of a CPN model is a distribution of
tokens on the places of the CPN model. Figure 8.3 depicts a state where there
is one token on place CoreNetwork and two tokens on place AdHocNetwork. The
number of tokens on a place is written in the small circle attached to the place.
The data values (colours) of the tokens are given in the filled box positioned
next to the small circle. As an example, place CoreNetwork contains one token
with the colours:

(ROUTING, {src="3ffe:100:3:401::2", dest="3ffe:100:3:401::1",
cont=DNSREQ("AHN(3)")})

representing a DNS request in transit from Host 1 to the DNS server. Place
AdHocNetwork contains two tokens representing gateway advertisements in
transit to nodes in the ad-hoc network. The two Config places each contains a
token representing the configuration of the corresponding gateway. It consists

8.4. The CPN Model 129

of the IP address of the interface connected to the core network, the IP address
of the interface connected to the ad-hoc network, and the prefix announced.

The data values (colours) of tokens that can reside on a place are deter-
mined by the colour set of the place which by convention is written below the
place. Colour sets are similar to types known from conventional programming
languages. Figure 8.4 lists the definitions of the colour sets (types) used in
the System module. IP addresses, prefixes, and symbolic IP addresses are rep-
resented by colour sets IPAdr, Prefix, and Symname all defined as the set of
strings. The colour set PacketCont and Packet are used for modelling the IP
packets. The five different kinds of packets used in the interoperability proto-
col are modelled by PacketCont:

DNS_REQ modelling a DNS request packet. It contains the symbolic IP address
to be resolved.

DNS_REP modelling a DNS reply. It contains the symbolic IP address and the
resolved IP address.

DNS_UPD modelling a DNS update. It contains the symbolic IP address to be
updated and the new IP address to be bound to the symbolic address.

GW_ADV modelling the advertisements disseminated from the gateways. An
advertisement contains the IP address of the gateway and the announced
prefix.

PACKET modelling generic payload packets transmitted between hosts and the
mobile nodes.

The colour set Packet models the packets as a record containing the source,
destination, and the content. The actual payload (content) and layout of pack-
ets are indifferent for modelling the interoperability protocol and has therefore
been abstracted away. The colour set Cmd is used to control the operation of
the various modules in the CPN model. The colour set GWConfig models the
configuration information of the gateway.

8.4.2 Modelling the Core Network

Figure 8.5 shows the CoreNetwork module modelling the core network. This
module is the immediate submodule of the substitution transition CoreNet-
work of the System module shown in Figure 8.3. The port place CoreNetwork is
assigned to the CoreNetwork socket place in the System module (see Figure 8.3).
Port places are indicated by the , , or tags associated with them.
The assignment of a port place to a socket place means that the two places are
linked together and will always have identical tokens. By adding and removing
tokens from port places, it is possible for a submodule to exchange tokens with
its environment. The substitution transition Routing represents the routing
mechanism in the core network. The substitution transition Host represents
the host on the core network, and the substitution transition DNS Server rep-
resents the DNS server.

Hosts.

Figure 8.6 depicts the Host module modelling the host on the core network. The
port place CoreNetwork (bottom) is assigned to the CoreNetwork socket place in
the CoreNetwork module (see Figure 8.5). The module models the transmission
of packets from the host to one of the mobile ad-hoc nodes. The substitution

10

15

20

25

130 Chapter 8. Model-based Prototyping of an Interoperability Protocol

(* ——- Addressing --- *)
colset Prefix = string; (* address prefixes x)
colset IPAdr = string; (* IP addresses *)

colset SymName = string; (* symbolic names *)

colset SymNamexIPAdr = product SymName % IPAdr;
colset IPAdrxPrefix = product IPAdr x Prefix;

(* ——- packets --- x)

colset PacketCont = union DNS REQ : SymName + (* DNS Request
DNS_REP : SymNamexIPAdr + (* DNS Reply
DNS_UPD : SymNamexIPAdr + (x DNS Update
GW_ADV : IPAdrxPrefix + (x Advertisments
PACKET; (» Payload

colset Packet = record src : IPAdr =«

dest : IPAdr =
cont : PacketCont;

colset Cmd = union ROUTING +
RECEIVE : IPAdr +
FLOODING : IPAdr +
GWAHNROUTING : IPAdr +
AHNGWROUTING : IPAdr;

colset CmdxPacket = product Cmd * Packet;

(x ——— Gateways configuration --- x)
colset GWConfig = product IPAdr » IPAdr x Prefix;

Figure 8.4: Colour set definitions used in the System module.

DNS
Server

DNSServer

Core

Network Routing

CmdxPacket CNRouting

Figure 8.5: Core Network module — modelling the core network.

transition Flows (top) is used for interfacing with the animation GUI. We will
return to this issue in Sect. 8.5.

The remaining places and transitions are used for modelling the behaviour
of the host. The rectangles in Fig. 8.6 are ordinary transitions (i.e., not substi-
tution transitions) which means that they can become enabled and occur. The
dynamics of a CPN model consists of occurrences of enabled transitions that
change the distribution of tokens on the places. An occurrence of a transition
removes tokens from places connected to incoming arcs of the transition and
adds tokens to places connected to outgoing arcs of the transition. The colours
of the tokens removed from input places and added to output places are deter-
mined by evaluating the arc expressions on the arcs surrounding the transition.
The arc expressions are written in the SML programming language. Data val-

*)
*)
*)
*)

*)

8.4. The CPN Model 131

Flows L
[Flows
1°"3ffe:100:3:401::2"

>/H;s:®<

IPAdr
ipadr ipadr

Send symname symname Receive (symname, resipadr)
DNSRequest DNSReply \Fows

NewFlow

SymName

ipadr

symname

SymNamexIPAdr
(symname, destipadr)

SymName

(ROUTING (src = ipadr, (RECEIVE ipadr,
dest = "3ffe:100:3:401::1", {src = "3ffe:100:3:401::1",
cont = DNS_REQ symname}) dest=ipadr,

cont = DNS_REP|

Send
Packet

(symname,resipadr)})

dest = destipadr,

(ROUTING,{src = ipadr,
cont = PACKET}

n Core

CmdxPacket

Figure 8.6: Host module — modelling the host.

ues must be bound to the variables appearing in the surrounding arc expres-
sions before the arc expressions can be evaluated. This is done by creating a
binding element which is a pair (¢,b) consisting of a transition ¢ and a binding
b assigning data values to the variables of the transition. A binding element
(t,b) is enabled iff the multi-set of tokens obtained by evaluating each input arc
expression is a subset of the tokens present on the corresponding input place.

When the user defines a flow in the animation GUI, a token will appear in
place NewFlow with a colour corresponding to the symbolic name of the mobile
ad-hoc node which is the destination of the packet flow. An example is given in
Fig. 8.6, where the NewFlow place contains a token corresponding to the user
having defined a flow to Ad-hoc Node 3. This enables the SendDNSRequest
transition in a binding where the value "AHN(3)" is bound to the variable
symname of type SymName and the variable ipadr is bound to the value of the
token on place Host specifying the IP address of the host.

When the SendDNSRequest transition occurs in the above binding, it will
remove tokens from places NewFlow and Host, and add tokens to the output
places Host, Waiting, and CoreNetwork. Tokens are added to the Host place
since SendDNSRequest and Host are connected by a double arcs which is a
short-hand for an arc in each direction having identical arc expressions. The
colour of the tokens added are determined by evaluating the expressions on
the output arcs. The resulting state is shown in Fig. 8.7. A token representing
the IP address of the host is put back on place Host, a token representing the
symbolic name to be resolved is put on place Waiting, and a token representing
a DNS request has been put on place CoreNetwork.

The reception of the DNS reply from the DNS server is modelled by the tran-
sition ReceiveDNSReply which causes the token on place Waiting to be removed
and a token to be added on place Flows. This corresponds to the host entering
a state in which packets can be transmitted to the mobile ad-hoc node. The
sending of packets is modelled by the transition SendPacket. The user may
then decide (via the animation GUI) to terminate the packet flow which will
cause the token on place Flows to be removed, and transmission of packets will
cease. A host can have concurrent flows to different mobile ad-hoc nodes.

132 Chapter 8. Model-based Prototyping of an Interoperability Protocol

NewFlow)¢ Flows L

SymName [@—J‘

1°"3ffe:100:3:401::2"

IPAdr

ipadr
symname

ipadr ipadr

Send symname ymname Receive (symname, resipadr)
DNSRequest J DNSReply

SymNamexIPAdr
(symname, destipadr)

SymName

(ROUTING {src = ipadr, (RECEIVE ipadr,
dest = "3ffe:100:3:401::1", {src = "3ffe:100
cont = DNS_REQ symname}) dest=ipadr,

cont = DNS_REP|(symname,resipadr)})

:B:401::1",

Send
Packet

(ROUTING,{src = ipadr,
o dest = destipadr,
[REQ("AHN(3)")}) P cont = PACKET},

1° (ROUTING,{src="3ffe:100:3:401::2
',dest="3ffe:100:3:401::1",cont=DNS

CmdxPacket

Figure 8.7: Host module — after occurrence of SendDNSRequest transition.

Domain Name Server and Database.

Figure 8.8 shows the DNSServer module modelling the DNS Server. The place
DNSAdr contains a token corresponding to the IP address of the DNS Server.
Place DNSDatabase models the DNS database entries on the DNS Server.
There is a token on place DNSDatabase for each entry in the DNS database.
The entries in the DNS database are modelled as tuples where the first com-
ponent is the symbolic address (name) and the second component is the IP
address bound to the symbolic name in the first component.

There are two possible events in the DNS server modelled by the transi-
tions DNSRequest and DNSUpdate. The transition DNSRequest models the
reception of DNS requests (from hosts) and the sending of the DNS reply con-
taining the resolved IP address. The transition DNSUpdate models the recep-
tion of DNS updates from the mobile ad-hoc nodes. Both transitions access the
DNSDatabase for lookup (transition DNSRequest) and modification (transition
DNSUpdate).

Core Network Routing.

The CPN model does not specify a specific routing protocol but only the re-
quirements to the core network routing protocol. This means that any routing
protocol that meets these requirements can be used to implement the interop-

' "3ffe:100:3:401::1"
—_—— —»(DNSAdF

P »)
ipadr 1° ("AHN(3)","3ffe:100:3:405::3")++ ipadr
1° ("AHN(4)","3ffe:100:3:405::4")++
1° ("AHN(5)","3ffe:100:3:406::5") v
(symname, resipadr) mg\A (symname,newipadr)
DNSRequest [« > Database)l DNSUpdate
(symname,resipadr)
~ SymNamexIPAdr)
(ROUTING, ™~ (RECEIVE ipadr, (?sEr(c:EiV:em:daZr
{src = ipadr, S~ {src = srcipadr, dest = ipadr,
dest = srcipadr, h dest = ipadr, — ! :
cont = DNS?RE’P (symname,resipadr)}) cont = DNSLREQ symname}) cont = DNS_UPD|(symname,newipadr)})
o/ Core

CmdxPacket

Figure 8.8: DNSServer module — modelling the DNS Server.

8.4. The CPN Model 133

1°[("3ffe:100:3:405::","3ffe:100:3:40
1::3"),("3ffe:100:3:406::","3ffe:100:3
(ROUTING, :401::4")]
{ src = srcipadr,

dest = destipadr, cont = content})

routinginformation

RoutingInformation

CmdxPacket (RECEIVE nhipadr, [nhipadr = FindNextHop routinginformation destipadr] RoutingInformation

{src = srcipadr,dest=destipadr,cont=content})

Figure 8.9: CNRouting module — Routing in the core network.

erability protocol. The routing mechanism in the core network is abstractly
modelled by the CNRouting module shown in Figure 8.9. The place Routing-
Information models the routing information computed by the specific routing
protocol in operation. This place contains a token that makes it possible given
a prefix, to find the IP address of the corresponding gateway on the core net-
work. This specifies the requirement that the gateways are required to partic-
ipate in the routing protocol of the core network and announce a route to the
prefix that they are advertising in the mobile ad-hoc network. This enables
packets for nodes in the mobile ad-hoc network to be routed via the gateway
advertising the prefix that matches the destination IP address of the packet.
The transition Route models the routing of the packet on the core network. It
uses the routing information on place RoutingInformation to direct the packet to
the proper gateway. The function FindNextHop in the guard expression of the
transition computes the IP address of the next hop gateway using the routing
information and destination IP address of the packet.

8.4.3 Modelling the Gateways

The role of the gateway is to relay packets between the core network and the
mobile ad-hoc network, and to periodically send advertisements to the mobile
ad-hoc network. Figure 8.10 shows the Gateway module modelling the oper-
ation of the gateways. This module is the submodule of the two substitution
transitions Gateway1 and Gateway2 on the System module. This means that
there will be two instances of the Gateway module - one for each of the substi-
tution transitions. Figure 8.10 shows the instance corresponding to Gateway1.
The port place CoreNetwork is assigned to the socket place CoreNetwork and
the port place AdHocNetwork is assigned to the socket place AdHocNetwork on
the System module. The place Config contains a token giving the configuration
of the gateway.

The relay of packets from the core network to the mobile ad-hoc network
is modelled by the transition AHN_CoreTransmit and the relay of packets from
the mobile ad-hoc network to the core network is modelled by the transition
Core_AHNTransmit. Packets to be transmitted from the core network to the
ad-hoc network are represented by tokens in the place CoreNetwork. When the
transition Core_AHNTransmit occurs corresponding to the relay of a packet from
the core network to the ad-hoc network, this token will be removed from the
CoreNetwork place and a new token representing the packet added to the place
AdHocNetwork. The relay of packets from the AdHocNetwork to the CoreNet-
work is modelled in a similar manner by the transition
AHN_CoreTransmit. The periodic transmission of advertisements on the mo-
bile ad-hoc network is modelled by the substitution transition GatewayAdver-
tisement. The presentation of the submodule associated with this substitution
transition has been omitted.

134 Chapter 8. Model-based Prototyping of an Interoperability Protocol

(ROUTING, packet) AHN_CORE (RECEIVE ipadr,packet)
Transmit

1 ("3ffe:100:3:401::3","3ffe:100:3:4 | | (iPadrl,ipadr,prefix)

05::1","3ffe:100:3:405::")

AdHoc
Network

Core
Network

Gateway
Advertisement

GWAdvertise
(ipadrl,ipadr,prefix)

GWConfig

CmdxPacket CmdxPacket

,,,,,,, o CORE_AHN
(RECEIVE ipadri, packet) Transmit (GWAHNROUTING ipadr,packet)

Figure 8.10: Gateway module — modelling the operation of the gateways.

8.4.4 Modelling the Mobile Ad-hoc Network

Figure 8.11 depicts the AdHocNetwork module which is the top level module
of the part of the CPN model modelling the mobile ad-hoc network. The place
Nodes is used to represent the nodes in the mobile ad-hoc network. The place
RoutingInformation is used to represent the routing information in the ad-hoc
network which is assumed to be available via the routing protocol executed in
the ad-hoc network. This routing information enables among other things the
nodes to determine the distance to the reachable gateways. Detailed informa-
tion about the colour of the token on place Routinginformation has been omitted.

Figure 8.12 lists the definition of the colour sets used in the AdHocNetwork
module. The topology of the mobile ad-hoc network is abstractly represented by
only representing the distance from each of the ad-hoc nodes to the two gate-
ways. The reason is that it is only the relative distance to the two gateways
which are of relevance to the operability protocol — not the complete topology.
The colour set Distancelnformation is used to keep track of the reachability be-
tween the nodes in the ad-hoc network and the gateways. The distance infor-
mation is a list with an entry for each pair of ad-hoc node and gateway. Each
entry is again list consisting of a four-tuple (colour set DistanceEntry). Each en-
try consists of the symbolic name of the mobile ad-hoc node, its IP address (if
configured), the IP address of the gateway (if configured), and the distance to
the gateway. The gateway may also be unreachable in which case the distance
is set to NOTREACH.

The colour set AHNConfig is used to model the configuration information

1 (AHN(3),[("3ffe:100:3:405::3","3ffe
:100:3:405::1","3ffe:100:3: 405::")])+
+

1 (AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+

Routing
Information

Distancelniorination

1 (AHN(S),[("3ffe:100:3:406: 5" "3ffe ‘
:100:3:406::1,"3ffe: 100:3:406: "), (" \
Sffe:100:3:405":5","3ffe:100:3:405:: ; ‘
1","3ffe:100:3:405::")]) + v

3
AHNodes Mobility Routing Flooding
AHNConfig
Node Mobilit AHNRouting Flooding
[I/0}
N AdHoc
> <

Network

CmadxPacket

Figure 8.11: AdHocNetwork module — modelling the ad-hoc network.

10

8.4. The CPN Model 135

(* —-—-- ad-hoc nodes --- x)
colset AHId = int with 1..5;
colset AHNode = union AHN : AHId;

(* ——- distance information --- «)

colset Distance = union REACH : Dist + NOTREACH;

colset DistanceEntry = product AHNode x IPAdr * IPAdr x Distance;
colset DistanceInformation = list DistanceEntry;

(* ——- configuration information for ad-hoc nodes --- x)
colset AHNIPConfig = product IPAdr % IPAdr x Prefix;
colset AHNIPConfigs = list AHNIPConfig;

colset AHNConfig = product AHNode x AHNIPConfigs;

Figure 8.12: Colour definitions used in the AdHocNetwork module.

for the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on
place Nodes and the colour of the tokens specifies the name of the node and a
list of configured IP addresses. Each configuration of an IP address specifies
the IP address configured, and the IP address and prefix of the corresponding
gateway. It is possible for a mobile ad-hoc node to configure an IP address
for multiple gateways. The node will ensure that the DNS database always
contains the IP address corresponding to the preferred gateway.

There are four substitution transitions in the AdHocNetwork module corre-
sponding to the components of the ad-hoc network represented:

AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.
This will be presented in more detail below.

Mobility represents the mobility of nodes in the ad-hoc network, i.e., that the
nodes may move closer or further away from the gateways. We will return
to the modelling of mobility in Sect. 8.5.

Routing represents the routing protocol executed in the ad-hoc network. The
purpose of the routing protocol in the context of the interoperability pro-
tocol is to provide the nodes with information about distances to the gate-
ways. The routing is abstractly modelled in a similar way as the routing
mechanism in the core network and will not be discussed further in this

paper.

Flooding models the dissemination of advertisements from the gateways. A
detailed presentation of this part of the model has been omitted.

Figure 8.13 depicts the Node module specifying the operation of the ad-hoc
nodes. The module has three substitution transitions. PacketReceive repre-
sents the reception of packets from hosts in the core network. The submodule
PacketReceive of this substitution transition is shown in Figure 8.14. The tran-
sition PacketReceive models the reception of a packet and consumes the token
on place AdHocNetwork corresponding to the packet being received. AdvRe-
ceive represents the reception of advertisements from the gateways. A node
changes its preferred IP address if the received advertisement is from a gate-
way which is closer than the gateway corresponding to the currently preferred
gateway (if any). If the node configures a new preferred IP address based on
the received advertisement, then it will send an update to the DNS server con-
taining the new preferred IP address. DeleteGW represents the case where the

136 Chapter 8. Model-based Prototyping of an Interoperability Protocol

1 (AHN(3),[("3ffe:100:3:405::3","3ffe
1100:3:405::1","3ffe:100:3:405::")])+
-

1 (AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
-

1 (AHN(S),[("3ffe:100:3:406::5","3ffe
1100:3:406::1","3ffe:100:3:406::")])

PacketReceive

AdHoc
Network

CmdxPacket

Figure 8.13: Node module — modelling an ad-hoc node.

(RECEIVE ipadr,
{src = srcipadr,

dest = ipadr, i
[I/O]} 9 (AHN(i),ahnipconfigs) cont = PACKET}) AdHoc
PacketReceive
Network

AHNConfig

[IPConfigured(AHN(i),ahnipconfigs,ipadr)] CmdxPacket

Figure 8.14: PacketReceive module — modelling reception of payload packets.

gateway corresponding to a configured IP address becomes unreachable. The
assumption is that this will be detected via the routing protocol executed in
the ad-hoc network or if advertisement has not been received for a specified
amount of time. The submodules of the AdvReceive and DeleteGW are similar
in complexity as the submodule of the PacketReceive substitution transition in
Fig. 8.14 and has been omitted.

8.5 The Animation Graphical User Interface

The animation GUI has been implemented based on a general animation pack-
age [C2] developed in the course of the project. The animation package provides
a general framework for adding various diagram types on top of executable
models. The animation package is not designed specifically for CPN models,
but is applicable also to other modelling formalisms.

The architecture of the model-based prototype developed in the project is de-
picted in Fig. 8.15 and consists of three main parts: The CPN Tools GUI (left),
the CPN simulator (middle), and the animation GUI (right). The CPN Tools
GUI and the CPN simulator constitute the CPN computer tools used in the
project. CPN models are constructed using the CPN Tools GUI and the CPN
simulator implements the formal semantics of CP-nets for execution of CPN
models. The simulator communicates via the XML-RPC [170] infrastructure
with the animation GUI to display the execution of the CPN model using the
domain-specific graphics and for receiving stimuli/input from the demonstra-
tor. The specific visualisation means are determined by the set of animation
plug-ins used in the animation GUI. One animation plug-in was used to obtain
interaction graphics in the form shown in Fig. 8.16. A second animation plug-in
was used to obtain feedback in the form of message sequence charts (MSCs).

Figure 8.16 shows a representative snapshot of the application-specific dur-
ing the execution of the CPN model. The IP addresses configured by the in-
dividual nodes are shown as labels below the nodes. For an example, Ad-hoc
Node 3 has configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3.

8.5. The Animation Graphical User Interface 137

Animat;
< > plugins
CPN Tools CPN i : i 3 i
] Animation
GUI simulator
package
XML-RPC E i XML-RPC
client S > server

Figure 8.15: Architecture of the model-based prototype.

AHN(3) -> 3ffe:100:3:406::3 ” ODNS request/reEIy/update
AHN(4) -> 3ffe:100:3:405::4 / ®Ga eway advertisement
AHN(5) -> 3ffe:100: 3 406 5 J ® Data packet

0 0

—-ﬂ:

o 401
SN 3505 0111 3ffe 100 3:405::

0 0
o
\ 1 0 Ad-hoc Node

4
3ffe:100:3:405::4
O 3ffe:100:3:406::4

00

Ad-hoc Node 3 | |
—‘&zgﬁ i |
Gate e: /
3f‘fe 100 3:401;:2 3ffe:100:3:401::4 Ad-hoc Node 5 /

3ffe:100:3:406::1 3ffe:100:3:406::5
3ffe:100:3:405::5 .
: \.,_.,"

o
N

Ehﬁ@
| é

Figure 8.16: Snapshot of the interaction graphics.

The convention is that the preferred IP address is the topmost address in the
list below the node. The entries in the DNS database are shown in the upper
left corner. It shows the entries for each of the three ad-hoc nodes. The two
numbers written at the top of each node are counters that provide information
about the number of packets on the incoming (left) and outgoing (right) inter-
faces of the nodes. Transmissions of advertisements from the gateways are
visualised by green dots. Transmission of payload packets are visualised using
read dots, and DNS packets are visualised using blue dots. Figure 8.16 shows
an example where Host 1 is transmitting a payload packet to Ad-hoc Node 3.

The user can move the nodes in the ad-hoc network thereby changing the
distances to the two gateways. It is also possible to define a flow from the
host in the core network to one of the nodes in the mobile ad-hoc network by
clicking on the read square positioned next to each of the ad-hoc nodes. The
square will change its colour to green once the CPN model has registered the
flow. The flow can be stopped again by clicking on the (now green) square next
to the mobile ad-hoc node. Finally, it is possible to force the transmission of an
advertisement from a gateway by clicking on the gateway.

Figure 8.17 shows an example of a MSC creating based on a simulation of
the CPN model. The MSC shows a scenario where Ad-hoc Node 3 makes a
Move and discovers that Gateway 2 is now the closest gateway. This causes it
to send a DNS update to the DNS server. The last part of the MSC shows the
host initiating a packet flow to Ad-hoc Node 3.

Graphical feedback from the execution of the CPN model is achieved by

138 Chapter 8. Model-based Prototyping of an Interoperability Protocol

(omseonr) (o) (comwarr) ((comwarz) [oaes) [voses) [voims]

Move

Advertisement

DNS update

DNS update

DNS lookup,

DN reply,

(- (- (- (- (- (-

Figure 8.17: Message sequence chart generated by the animation GUI.

if (event = "none" andalso n<>0)
then events
else events~ "~ [event]

]
m ®
events
EVENTS

Figure 8.18: Poll module — Polling the animation GUI for events.

attaching code segments to the transitions in the CPN model. These code seg-
ments are executed whenever the corresponding transition occurs in the sim-
ulation/execution of the CPN model. As an example, the transition Route (see
Figure 8.9) has an attached code segment which invokes the primitives re-
quired for animating the transmission of packets in the core network.

The CPN model receives input from the animation GUI by polling the ani-
mation GUI for events. The Poll module shown in Figure 8.18 polls the anima-
tion GUI for events at regular intervals during the execution of the CPN model
and puts events into a list on the place Events, thereby implementing an event
queue between the animation GUI and the CPN model. Parts of the CPN model
that is to react on events from the animation GUI are linked to the Event place
and are able to consume events from the event queue. The transition Produce
polls the animation GUI for events.

8.6 Conclusions

We have presented our model-based prototype approach and demonstrated its
use on an interoperability protocol. In addition to providing a detailed specifi-
cation of the interoperability protocol via the constructed CPN model, the work
has also highlighted the following characteristics and aspects of a model-based
(virtual) prototyping approach:

Representation. The use of an animation GUI on top of the CPN model has
the advantage that the behaviour observed by the user is as defined by the
underlying model that formally specifies the design. The alternative would
have been to implement a separate visualisation package in, e.g., JAVA, totally
detached from the CPN model. We would then have obtained a model closer
to the actual implementation. The disadvantage of this approach would have
been a double representation of the dynamics of the interoperability protocol.

8.6. Conclusions 139

Transparency. The use of a domain specific graphical user interface (the
animation GUI) has the advantage that the design can be experimented with
and explored without having knowledge of the CPN modelling language. This
has been shown in practise at a demonstration to management with no CPN
knowledge.

Controllability. A model-based prototype is easier to control compared to
a physical prototype, in particular in the case of mobile nodes and wireless
communication where scenarios can be very difficult to control and reproduce.

Abstraction. Implementation details can be abstracted away and only the
key part of the design have to be specified in detail. As an example, in the
CPN model of the interoperability protocol we have abstracted away the rout-
ing mechanisms in the core and ad-hoc networks, and the mechanism used for
distribution of advertisements. Instead, we have modelled the service provided
by these components. The possibility of making abstraction means that it is
possible to obtain an executable prototype without implementing all compo-
nents.

Feasibility. The use of a model means that there is no need to invest in phys-
ical equipment and there is no need to setup the actual physical equipment.
This also makes it possible to investigate larger scenarios, e.g., scenarios that
may not be feasible to investigate with the available physical equipment.

Related Work

Integrated use of visualisation and formal modelling has also been considered
for CP-nets in earlier work in the area of embedded systems [142], telecommu-
nication protocols [14], pervasive electronic patient records [10], and software
for mobile phones [112]. The case studies in [10, 14, 112, 142] all applied the
MiMic/CPN [141] package, an internal part of the DESIGN/CPN [37] tool. The
approach presented in this paper relies on an external application handling the
visualisation, which we find is a more flexible approach as it allows us to use
existing software libraries supporting different diagram types. In MiMIC/CPN,
input from the user is only possible by showing a modal dialog, meaning the
simulation of the model is stopped while the user is expected to input infor-
mation. The animation package presented in this paper avoids this by using
an asynchronous event queue polled by a transition in the model. As part of
future work, we plan to eliminate polling by allowing external applications to
directly produce and consume tokens on special external places.

Visualisation is also available in other tool sets. ExSpect [50] allows the
user to view the model state by associating widgets with the state of the model
and asynchronously interact with the model using simple widgets. In this way,
one creates simple user interfaces for displaying information and simple inter-
action. LTSA [116] allows users to animate models using an animation library
called SceneBeans [117]. In LTSA animations are tied to the models by asso-
ciating each animation activity with a clock; resetting a clock corresponds to
starting an animation sequence, and events in the animation corresponds to
progress of the clock. PNVis [99] associates objects of a 3D world with tokens,
and is suitable for modelling physical systems, but not immediately applicable
for network protocols. The Play-Engine [66] supports the developer in imple-
menting a prototype by inputting scenarios (play-in) via an application-specific

140 Chapter 8. Model-based Prototyping of an Interoperability Protocol

GUI, and then execute the resulting program (play-out). Compared to our ap-
proach this makes the model implicit as the model is created indirectly via the
input scenarios. We view an explicitly created model as an advantage when
the prototype is to serve as a basis for an actual implementation of the system.
The reason is that an implicitly created model is difficult to interpret as it is
automatically generated.

In conclusion, the work presented in this paper has demonstrated that using
CP-nets and the supporting computer tools for building a model-based proto-
type can be a viable and useful alternative to building a physical prototype.
Furthermore, the CPN model can also serve as a basis for further develop-
ment of the interoperability protocol, e.g., by refining the modelling of the rout-
ing and dissemination mechanisms to the concrete protocols that would be re-
quired to implement the solution. There is still a gap from the CPN model to
the actual implementation of the interoperability protocol, but the CPN mod-
elling has yielded an executable prototype that can be used to explore the solu-
tion and serve as a basis for the later implementation.

Acknowledgements. The authors gratefully acknowledge the support of
their colleagues in BAE SYSTEMS plc, Ericsson Microwave Systems AB and
Ericsson Danmark A/S, Telebit, and support from the UK, Swedish and Danish
MoDs under the EUCLID/Eurofinder programme, Project RTP6.22 (B2NCW).
The authors would also like to acknowledge Rolf Christensen for his contribu-
tions.

