
FMIS 2007

A Game-theoretic Approach

to Behavioural Visualisation

Michael Westergaard1 ,2

Department of Computer Science
University of Aarhus

Aabogade 34
DK-8200 Aarhus N, Denmark

Abstract

To bridge the gap between domain experts and formal methods experts, visualisations of the behaviour of
formal models are used to let the domain expert understand and experiment with the formal model. In
this paper we provide a definition of visualisations, founded in game-theory, which regards visualisations
as transition systems synchronised with formal models. We show example visualisations, use them to show
winning strategies of games, and demonstrate how an industrial application of formal models benefited from
this approach.

Keywords: Behavioural visualisation, formal methods, game-theory, transition systems.

1 Introduction

Formal models are being used for specification and verification of complex systems

[11, 5, 6, 12, 9, 3], provide valuable insight into the workings of the systems, and

may detect errors early in the development process. One problem of constructing

formal models of systems is that the domain experts, who have a lot of knowledge

of the domain of the modelled system, typically have little or no knowledge of

formal models. At the same time, experts in formal models typically have little

knowledge of the system domain. One way to solve this is to let the domain expert

describe the system to the formal methods expert, who then constructs a model

for specification and validation. The drawback of this approach is that it is very

difficult to know whether problems in the model represent errors in the model itself

or in the modelled system. The formal methods expert typically does not know the

domain well enough to make the judgement for subtle errors, and the domain expert

does not understand the formal model or the error report well enough to make the

judgement either. One way to facilitate the communication between the formal

1 Supported by the Danish Research Council for Technology and Production.
2 Email: mw@daimi.au.dk

A revised version of this paper will be electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:mw@daimi.au.dk

Westergaard

Domain expert

Specification Formal model

Visualisation

Explore and

understand

s2

s4

a

s3

b

s1

a

Fig. 1. Methodology.

methods expert and the domain expert is to create a domain-specific visualisation,

which the domain expert can inspect and stimulate. Examples of visualisations

include cartoon-like representations of, e.g., computers on a network and how they

communicate or a live updated UML sequence diagram [17] showing how messages

are exchanged between people working in a bank. We also provide an example of

how this can be used to visualise problems found in a model.

In order to facilitate communication of formal models, several tools [19, 25, 10,

21, 20, 15, 7] have been conceived with the purpose of constructing domain-specific

visualisations. These tools rely on the methodology depicted in Fig. 1. Here a do-

main expert writes a specification of the system. The specification is usually written

in natural language and only uses semi-formal notation. Often the specification is

vague and incomplete, maybe even self-contradictory. In order to make the speci-

fication clear, complete, and consistent, a formal executable model in constructed.

This is usually done by a formal methods expert, who is not an expert on the do-

main. Ambiguities can be resolved during the construction of the model, which in

itself makes the construction worthwhile. In order to ensure that the formal model

actually reflects the specification, a visualisation is created. The behaviour of the

visualisation is defined by the formal model, so the visualisation reflects the state

of the model and changes in the model is reflected as updates to the visualisation.

The domain expert is now able to see and understand what happens in the formal

model, and can even interact with it. Inconsistencies between the model and the

specification can be resolved as the domain expert identifies things that do not work

as intended. We may then verify properties of the model required by the domain,

e.g., that a network protocol cannot cause dead-locks, knowing that errors in the

model probably reflect errors in the specification. One problem with tools facili-

tating the methodology in Fig. 1 is that they are built in an ad-hoc manner, as an

afterthought, when the gap between domain experts and formal method experts be-

comes evident to researchers working with a specific formalism. Therefore the tools

either mainly allows simple inspection of the state of the model during execution

or require that the modeler spends a lot of time constructing a visualisation and

integrating it with the model.

2

Westergaard

In this paper we propose a new, theoretically well-founded way to view visual-

isations, a declarative way for tying visualisations to a formal model, and a way

to visualise error reports from formal verification so the domain expert is able to

understand them. The idea is to view visualisations as transition systems, where

the state of the system is what is visible to observers and labels on transitions are

changes to what is visible. We tie visualisations to models by defining a synchroni-

sation constraint [2], and require that the visualisation is able to simulate [16] the

model, to make the behaviour of the synchronised product unconstrained by the

visualisation and dictated by the model. This formulation only allows the domain

expert to observe the behaviour of the formal model. In order to also allow the do-

main expert to provide input to the formal model, we regard it as describing a game

between the modelled system and its surroundings; the domain expert then controls

the environment and a computer tool controls the modelled system. The definition

is formal and general, so it is possible to implement the method in computer tools

supporting any formalism using transition systems as semantical foundation.

The paper is structured as follows: Sect. 2 describes related work, and in Sect. 3

some theoretical background material needed to understand the rest of the paper

is provided. Sect. 4 introduces and exemplifies the idea of regarding visualisations

as transition systems synchronised with formal models, and in Sect. 5 two example

uses of visualisations are described, namely a way to show winning strategies of

games and an industrial application of the method in Fig. 1. In Sect. 6, we sum up

our conclusions.

2 Related work

Several tools supporting the methodology in Fig. 1 exist. In this section we will

describe some of them and discuss strengths and weaknesses of each.

ExSpect [21], a tool for modeling based on coloured Petri nets [8], allows the

user to view the state of models by associating widgets with the state of the model,

and allows users to asynchronously interact with the model using simple widgets.

The disadvantage of this approach is, firstly, that it is specific to coloured Petri nets

(as it relies on the special kind of state in a coloured Petri net) and, secondly, that

input from the user is made by switching from one state of the system to another

without formally executing a transition in the model.

Mimic/CPN [19] is a library which facilitates visualisation of coloured Petri

net models. Mimic/CPN provides an API which can be used to define and update

visualisations. By annotating a model, these functions are called during execution of

the model. The disadvantage of this approach is that it is very inconvenient to have

to change the model in order to add a visualisation and the changes unnecessarily

clutter the model. Furthermore, this library mainly focus on the state changes

of the system, and everything shown to the user must be formulated as explicit

updates, so it is not possible to easily monitor the value of, e.g., a counter like in

ExSpect. Finally, Mimic/CPN is unable to handle asynchronous input, which must

be simulated by polling.

LTSA [14], a tool for modeling using timed transition systems, allows users to

animate models using a library called SceneBeans [20, 15]. Animations are tied

3

Westergaard

to models by associating animation activities with clocks. Resetting a clock cor-

responds to starting an animation sequence. The termination of an animation

sequence, or a user with a mouse, sends events which correspond to progress of

timers. The method is nice and declarative, but requires that we have clocks at our

disposal, limiting the method to timed formalisms.

PNVis [10] is an add-on for the Petri Net Kernel [22], a modular tool for editing

Petri nets [18]. PNVis associates 3D objects and locations in a 3D world with certain

aspects of the state of the model and is hence suitable for modeling physical systems,

but not aimed at systems that do not immediately have a physical counter-part.

The Play-Engine [7] allows a prototype of a program to be implemented by in-

putting scenarios (play-in) via an application-specific GUI. The resulting program

can then be executed (play-out). Compared to the approach of the other described

tools, this makes the model implicit as it is created indirectly via the input scenarios.

Furthermore, the Play-Engine relies on heavy-weight techniques to perform visuali-

sation as the model is given implicitly. In order to decide how to execute the model,

a complete model-checking step is performed in each step, which is computationally

expensive.

3 Theoretical background

Most of the work described in this paper has been developed in the context of

coloured Petri nets (CP-nets or CPNs) [8] and game coloured Petri nets (game

CPNs or game CP-nets) [24], but applies to many other formalisms. In order to

reflect that, we formulate our method using transition systems, which constitute

the semantical foundation for several important modelling languages, e.g. CP-nets

and the π-calculus [16]. In this section we recall definitions of transition systems,

synchronised products, simulations, game transition systems (games), as well as

winning strategies for games.

Definition 3.1 A transition system (TS) is a tuple (S, T, δ, sI), where S is a (finite

or infinite) set of states, T is a (finite or infinite) set of transitions, δ ⊆ S × T × S

is the transition relation, and sI ∈ S is the initial state.

Four examples of transition systems can be seen in Fig. 2. Here we have rep-

resented each state by a circle and transitions as arcs leading from one circle to

another. If there is an arc, labelled by a, leading from a circle labelled s1 to a

circle labelled s2, it represents a transition (s1, a, s2) ∈ δ. The initial state is

marked by an incoming arc with no source. We will later explain why some arcs

are dashed and some states are drawn using a double line. As an example, TS

(a) can be represented as T S = (S, T, δ, sI) where S = {s1, s2, s3, s4}, T = {a, b},
δ = {(s1, a, s2), (s2, b, s3), (s2, a, s4)}, and sI = s1.

Let T S = (S, T, δ, sI) be a transition system, s, s′ ∈ S two states, and t ∈ T

a transition. If (s, t, s′) ∈ δ, then t is said to be enabled in s and the occurrence

(execution) of t in s leads to the state s′. This is also written s
t
→ s′. A finite

occurrence sequence, σ, is an alternating sequence of states, si, and transitions, ti,

written σ = s1
t1→ s2

t2→ · · · sn−1
tn−1

→ sn where (si, ti, si+1) ∈ δ for i = 1, . . . , n − 1,

and s1 = sI . An infinite occurrence sequence, σ′, is an alternating sequence of

4

Westergaard

s2

s4

a

s3

b

s1

a

(a)

s1

s2

a

s3

b

s4

a b

c

(b)

(s1,

s1)

(s2,

s2)

(s3,

s4)

(a,a)

(b,b)

(c)

s1

s2

s3

a

b

(d)

Fig. 2. Four transition systems. (c) is a synchronisation of (a) and (b), (d) is equal to (c) except that its
states and transitions have been renamed.

states, si, and transitions, ti, written σ′ = sI = s1
t1→ s2

t2→ · · · sn−1
tn−1

→ sn
tn→ · · ·

where (si, ti, si+1) ∈ δ for i ≥ 1, and s1 = sI . We denote by Σω the set of all (finite

and infinite) occurrence sequences.

We often wish to synchronise two or more transition systems, and a way to that

is by forming a synchronised product [2] by using a relation on transitions to define

which must occur simultaneously, as formalised in Def. 3.2.

Definition 3.2 Let T Si = (Si, Ti, δi, s
I
i) for i = 1, . . . , n be transition systems. A

synchronisation constraint is a relation S ⊆ T1 × T2 × · · · × Tn. The synchronised

product of T Si w.r.t. S is T S = (S, T, δ, sI) with S = S1×S2×· · ·×Sn, T = S, δ =

{((s1, . . . , sn), (t1, . . . , tn), (s1
′, . . . , sn

′)) | (t1, . . . , tn) ∈ T , (si, ti, si
′) ∈ δi for i =

1, . . . , n}, and sI = (sI
1, s

I
2, . . . , s

I
n).

If we synchronise the TS (a) and TS (b) in Fig. 2 using the synchronisa-

tion constraint S = {(a, a), (b, b)}, we obtain TS (c) (we have omitted states

that are not reachable from the initial state). We notice that it is not possible

for one of the TS to take a step autonomously using the above definition. We

can simulate this by adding a distinguished transition ∆ which leads from each

state to itself. In the case of the TS in Fig. 2(a), we would add ∆ to T and

{(s1,∆, s1), (s2,∆, s2), (s3,∆, s3), (s4,∆, s4)} to δ.

We often need to state that two transition systems behave in a similar way. We

do this by defining a simulation, which states that one TS is able to exhibit the

same behaviour as another (but not necessarily the other way around). We do this

by a (strong) simulation [16]:

Definition 3.3 Let T Si = (Si, T, δi, s
I
i) for i = 1, 2 be transition systems sharing

transitions. A relation � ⊆ S1 × S2 is a simulation iff whenever two states are in

the relation, s1 � s2, then for all transitions α ∈ T , such that s1
α
→ s1

′, there exists

a s2
′ ∈ S2 such that s1

′ � s2
′ and s2

α
→ s2

′. We say that T S2 simulates T S1 if

there exists a simulation � ⊆ S1 × S2 such that sI
1 � sI

2.

In Fig. 2 both (a) and (b) can simulate (d) using the simulations �a= {(s1, s1),
(s2, s2), (s3, s3)} respectively �b= {(s1, s1), (s2, s2), (s4, s3)}.

If we look at a game like tic-tac-toe, we see that it has two players, cross and

naught. From the point of view of cross, it is only possible to add crosses to the

5

Westergaard

board, naughts are added “automatically” according to the rules of the game. We

want to reflect this in a transition system, so we split the transitions into two dis-

joints sets: the transitions controllable by the system we are modelling, and the

transitions executed by the environment. We make the assumptions about the

surroundings explicit in the model, yet provide a clear distinction between assump-

tions about the surroundings and the specification of the system. In the tic-tac-toe

example, the action of adding a cross to the board is controllable by the modelled

system and the action of adding a naught is not. Applying this to formal modelling,

transitions of the modelled system are controllable, e.g., the actions of a network

protocol, such as transmitting a packet or incrementing a counter, are controllable,

whereas actions of the surroundings (e.g., a network), such as transmitting or al-

tering a packet, are uncontrollable. Transitions of the environment formalise the

assumptions about the surroundings (e.g. whether the network is allowed to alter

packets). In normal games, like tic-tac-toe, we often also have some goal, e.g., end-

ing up with three crosses in one row. This is also the case when modelling systems

as games; in the case of a network protocol, a goal may be to successfully receive all

packets in the correct order. A game is a TS where transitions are separated into

disjoint sets: controllable and uncontrollable. Additionally we add a set of winning

(goal) states. This is summarised in Def. 3.4.

Definition 3.4 A game (or game transition system) is a tuple (S, T u, T c, δ, sI ,W),

such that T u is a set of uncontrollable transitions and T c is a set of controllable

transitions such that T u ∩ T c = ∅, W ⊆ S is a set of winning states, and (S, T u ∪
T c, δ, sI) is a transition system.

We can turn any TS in Fig. 2 into a game by splitting the transitions into

controllable and uncontrollable transitions and deciding which states are winning.

For example, if we take T c = {a}, T u = {b}, and W = {s4} we obtain a game for

TS (a). In the figure we have shown uncontrollable transitions using dashed arcs.

States in W are drawn using double lines.

A strategy is a function assigning to each state a controllable transition (if no

controllable transitions are enabled in a given state, we can just map the state to any

of the controllable transitions or add a distinguished transition ∆ to T c signifying

“do nothing”). A winning strategy is a strategy, that ensures we always end up in a

winning state, irregardless of what uncontrollable moves are chosen, i.e., a winning

strategy is a “program” ensuring we and up in a good state. Formally:

Definition 3.5 Let (S, T u, T c, δ, sI ,W) be a game and S : S → T c a strategy. An

occurrence sequence σ = s1
t1→ · · ·

tn−1

→ sn(· · ·) ∈ Σω, ti ∈ T u ∪ T c is consistent with

the strategy iff ti ∈ T c =⇒ ti = S (si) for all i = 1, . . . , n(, . . .). An occurrence

sequence, σ, is maximal iff it is a) infinite, or b) finite, σ = s1
t1→ · · ·

tn−1

→ sn,

and if sn
t
→ s for any s ∈ S then t ∈ T u. A strategy is a winning strategy iff all

maximal occurrence sequences, σ = s1
t1→ · · ·

tn−1

→ sn(· · ·) ∈ Σω with s1 = sI that

are consistent with the strategy satisfy ∃k ≥ 1 such that sk ∈ W .

If we take T c = {a}, T u = {b}, and W = {s4} in Fig. 2(a), it is not possible

to obtain a winning strategy (the only strategy is the mapping from all states to

6

Westergaard

the transition a. The occurrence sequence s1
a
→ s2

b
→ s3 is consistent with that

strategy, but does not lead to s4) whereas we can obtain a winning strategy in (b)

using T c = {a, c}, T u = {b}, and W = {s4} (the strategy mapping states s1, s3,

and s4 to the transition a and s2 to c is winning).

In [4], an algorithm from [13] is instantiated to obtain an efficient (and optimal)

algorithm to decide whether a given finite game (i.e. a game where |S| + |T u| +

|T c| < ∞) has a winning strategy and to extract that strategy. The intuition of

the algorithm is to calculate a minimal fix-point of all good states, where all states

in W are good and all states where we can take a controllable step to a good state

and all uncontrollable steps leading to a good state are good.

In Fig. 2(a), the only state which can be marked as good is s4 (s3 is not good

as it has no successors, s2 not good as the b transition leads to s3, which is not

good, and in s1 a leads to s2, which is not good). In (b), initially s4 is good. We

can then mark s3 as good (as we can take an a transition to s4, which is good).

After that, we can mark s2 as good (c, which is controllable, leads to s3 and b, all

uncontrollable transitions enabled in s2, lead to s4). Finally we can mark s1 as

good as both a and b lead to good states.

Using this algorithm, we can obtain a winning strategy for any game (if one

exists). Often we are not satisfied knowing whether a winning strategy exists. If

one does, we are interested in obtaining the winning strategy, as we can use as a

guide to execute our model so we reach a winning state. We often require a counter

example if no winning strategy exists so we can understand why. Until now, when

concluding that a given game does not have a winning strategy, the best counter

example we could provide was a list of all good states. This can be useful for small

examples, but for systems with millions or more states this is not very useful. The

purpose of the counter example is to convince a user that it is not possible to have

a winning strategy. If a user needs conviction, it is probably because he thinks he

knows a winning strategy. In this paper we will propose a new way of providing

counter examples to the existence of winning strategies. We let the user assume the

role of the modelled system and let him try out his winning strategy against the

computer, which knows how to counter all moves of the user. The user will try his

winning strategy on a visualisation of the model. We will go into more detail about

this in Sect. 5.

4 Visualisations as game transition systems

The idea of this work is to view visualisations as game transition systems, synchro-

nised with formal models. The rationale behind the idea of considering visualisations

as transition systems is that we can consider what is visible in the visualisation as

a state and changes to what can be seen can be considered as transitions. As an

example, consider Fig. 3. The semi-circles represent states of the visualisation and

the rectangles are the labelled transitions leading from one state to another. In the

left semi-circle we see one state, a person is standing at the left of a line. If we

take the transition in the leftmost rectangle, the person runs to the right and we

reach the state in the semi-circle in the middle of the figure, where the person is

standing at the middle of the line. Now one of two things can happen: either the

7

Westergaard

Fig. 3. Visualisations as transitions systems.

person keeps running (the transition to the upper right state), or the person gets

tired and sits down (the transition to the lower right state). This visualisation is

a renaming of the TS in Fig. 2(a), where “runs” corresponds to transition a, “gets

tired and rests” corresponds to transition b, and s1 . . . s4 corresponds to the various

positions of the person. The states are graphical images and the transitions are

transformations of one graphical image to another, e.g., an animation.

If we allow all synchronisations between a visualisation and a model, the be-

haviour of the synchronisation is not defined by the model, but by the model and

the visualisation in unison, so if we, e.g., create a visualisation consisting of only

one state and no transitions, the synchronisation is also without behaviour, which

is not what we want to obtain. We want the behaviour of the synchronised sys-

tem to be dictated by the model, and will only use the visualisation to show what

happens in the model. In order to do this, we require that the visualisation is

able to simulate the model. In that way, the behaviour of the synchronisation is

dictated entirely by the model. A slight technicality is that the definition of a sim-

ulation (Def. 3.3) requires that the two systems share transitions. We remove this

requirement and only require that, given a synchronisation constraint S ⊆ T1 × T2,

whenever s1 � s2, then for all α ∈ T1 if s1
α
→ s1

′ there exists a s2
′ ∈ S2 and a

β ∈ T2 such that s1
′ � s2

′, (α, β) ∈ S, and s2
β
→ s2

′. This allows us to say that

(c) in Fig. 2 can be simulated by (a), (b), and (d), as we no longer care about

the exact names of the transitions. For example, (c) can be simulated by (a) us-

ing the synchronisation constraint S = {((a, a), a), ((b, b), b)} and the simulation

�b= {((s1, s1), s1), ((s2, s2), s2), ((s3, s4), s3)}.

If we synchronise a model with a visualisation and require that the visualisation

is able to simulate the model, the execution is defined by the model alone, which is

fine if we only want to see the execution of the model. If we also want to manipulate

the execution, we need to loosen the requirement that the visualisation must be

able to simulate the model. Rather than allowing arbitrary synchronisations, which

would make it difficult to distinguish between actions taken by the model itself and

actions initiated by the user, we rely on games. The idea is that the visualisation

plays one side of a game and the model plays the other side; controllable transitions

of the visualisation corresponds to uncontrollable transitions of the model and vice

versa. We require that the uncontrollable transitions of one side can simulate the

controllable transitions of the other side. This is formulated in Def. 4.1.

Definition 4.1 Given a model as a game T SM = (SM , T u
M , T c

M , δM , sI
M ,WM),

8

Westergaard

a visualisation T SV = (SV , T u
V , T c

V , δV , sI
V ,WV), and a synchronisation constraint

S ⊆ (T u
M × T c

V) ∪ (T c
M × T u

V), we say that T SV can be used as a visualisation of

T SM with S iff there exists a relation ∼⊆ SM × SV such that whenever sM ∼ sV

• for all α ∈ T c
M if sM

α
→ sM

′ there exist sV
′ ∈ SV , β ∈ T u

V such that sM
′ ∼ sV

′,

(α, β) ∈ S, and sV
β
→ sV

′, and

• for all β ∈ T c
V if sV

β
→ sV

′ there exist sM
′ ∈ SM , α ∈ T u

M such that sM
′ ∼ sV

′,

(α, β) ∈ S, and sM
β
→ sM

′.

Furthermore we require that sI
M ∼ sI

V .

The definition captures the intuition that whenever the model makes a move (a

controllable transition in the model), the visualisation must be able to show that,

and whenever the user provides some stimulation (a controllable transition in the

visualisation), the model must be able to handle that and execute a corresponding

uncontrollable transition.

One way to generate simple visualisations, is to use other formalisms as visual-

isation of our model. If we have created a model as a TS and need to communi-

cate the model to an engineer who does not understand it, but who uses message

sequence charts (MSC) on a daily basis (MSC can be seen as simplified UML se-

quence diagrams [17]), we can simply create an MSC and use it as visualisation of

our model. In the following we present two visualisations that have proven them-

selves widely applicable and useful [12,9] for describing complex systems to domain

experts, namely message sequence charts and cartoon-like visualisations created us-

ing a Java library called SceneBeans [20]. The MSC visualisation is an instance of

the idea of using another formalism as visualisation of the model. The SceneBeans

library is used by the LTSA tool as described in Sect. 2, but we use it in a way

that makes it usable for a much wider range of formal models, as we do not require

that the model is described as timed transition systems. The MSC visualisation

exemplifies how to construct a visualisation that allows us to only see the behaviour

of a model (not to manipulate it), whereas the SceneBeans visualisation allows us

to see and manipulate the behaviour of the system.

Example 1: Message sequence charts

Message sequence charts can be used either formally or informally to describe

the behaviour of systems. A MSC consists of a set of processes, shown as vertical

lines, which are able to exchange messages, represented as horizontal arrows from

the source of the message to the destination, or which can execute internal events,

represented as a dot on the process.

In its simplest form, this visualisation has a process for each transition and shows

an internal event on the corresponding process whenever a transition is executed

in the model. More formally, given a model T SM = (S, ∅, T, δ, sI ,W), we define

a visualisation T SV = (SV , TV , ∅, δV , sI
V , ∅), where TV = T . The set of states,

SV consists of all possible message sequence charts with T as processes. This is

of course not manageable in reality (T may be infinite), so in practise we create

processes as transitions are executed. The initial state is a MSC with processes T

and no events, and transitions are enabled in s ∈ SV , s
t
→ s′, if s′ ∈ SV is equal

9

Westergaard

(a) (b) (c)

Fig. 4. Simple MSC visualisations of the example from Fig. 2(a).

to s with an internal event added to the process t. The synchronisation used is

equality. Using this visualisation directly on the model in Fig. 2(a), we can obtain

the two leftmost visualisations in Fig. 4, the leftmost MSC, (a), corresponds to

the occurrence sequence s1
a
→ s2

a
→ s4 and the middle MSC, (b), corresponds to

s1
a
→ s2

b
→ s3. The MSCs are updated as the model is executed. The MSCs shown

here are snapshots when no more transitions are enabled. To make the visualisation

more useful, we parametrise it with a function mapping transitions to process names

and event labels so we can rename events and show “similar” events on a single

process. Say the TS in Fig. 2(a) models a runner on a track (like the system in

Fig. 3). The runner starts at the beginning of the track and runs towards the end.

Optionally, the runner refuses to run any further halfway through the track, but

sits down and rests. If we map the transition a to the process “Runner” and the

event label “run” and b to “Runner” and “rest”, we would obtain a visualisation

as shown in Fig. 4(c) for the occurrence sequence s1
a
→ s2

b
→ s3. This visualisation

makes it easier to see what was intended by the model than Figs. 4(a) and (b).

Synchronising visualisations with formal models using this technique is very

useful and allows us to observe what happens in the model, but it does not allow

us to interact with the model, e.g., to drive the model into interesting states. The

next example makes full use of the separation into controllable and uncontrollable

transitions, and allows the user to interact with the model using the visualisation.

Example 2: Visualisation using SceneBeans

The SceneBeans [20] library uses an XML specification for describing visuali-

sations and allows programs using it to interact with the visualisation by invoking

commands in the visualisation and receiving events from the visualisation. By in-

voking a command on a SceneBeans visualisation, it is possible to change what is

displayed on the screen, e.g. to move a graphical representation of a person, as in

Fig. 3, and thereby provide feedback to the user. When a user, e.g., clicks on an

object in a visualisation, the visualisation can raise an event, which can be handled

by the application. We equate uncontrollable transitions of a SceneBeans visualisa-

tion with the provided commands, and controllable transitions with the events that

can be raised by user interaction.

Using the SceneBeans library, it is possible to create a visualisation like the one

sketched in Fig. 3. We want to control the runner, so we switch the transitions

in Fig. 2(a), so the dashed arcs represent controllable transitions and solid arcs

represent uncontrollable transitions. The start of the track corresponds to the left

of the line and the end of the track is at the right. When we want the runner to

progress along the track, we can click the figure representing the runner to raise a

10

Westergaard

1 public interface GameListener {

2 List<Transition> controllable(List<Transition> ts);

3 void controllable(Transition t);

4 void uncontrollable(Transition t);

5 void gameOver();

6 }

Fig. 5. The GameListener interface.

“run”-event (corresponding to a controllable a transition in the TS in Fig. 2(a)).

If we do nothing when the runner is halfway through the track (the middle state

in Fig. 3), it is possible that the uncontrollable b transition is executed, leading to

executing of the command “rest”, which makes the runner sit down and rest.

This kind of visualisation is formalism-independent, but the visualisation is

heavily dependent on the model, as we need to support the required commands

and events. Furthermore the user is required to specify how events and commands

should be synchronised with the transitions of the model.

4.1 Tool support

Support for synchronising visualisations with formal models by regarding the vi-

sualisations as games has been added to the BRITNeY Suite [23, 25], a tool for

visualising formal models, typically created using coloured Petri nets.

The tool has been extended with an interface, written in Java, which gives devel-

opers the ability to write their own programs interfacing with formal models. The

interface, which can be seen in Fig. 5, informs a visualisation, i.e. a class implement-

ing the interface, of all enabled controllable transitions (line 2). The visualisation

returns which controllable moves it would like to perform. The visualisation is

informed whenever the computer makes a move (line 4) and when a user-specified

move is executed (line 3). The names controllable/uncontrollable are from the point

of view of the visualisation. The tool is able to switch controllable/uncontrollable

transitions so the visualisation can control the controllable transitions of the model

if we wish to experiment with the behaviour of the model, or control the uncon-

trollable transitions of the model, allowing us to see how the model reacts to the

surroundings. Finally, the visualisation is informed when there are no more enabled

transitions (the game is over, line 5). This can be used if the user should be alerted

or cleanup is needed when the game is over. Classes implementing this interface act

as both visualisation and synchronisation constraint. As uncontrollable is not

allowed to raise exceptions, visualisations implementing this interface are able to

execute a transition synchronised with any transition offered by the model, so the

visualisation’s uncontrollable transitions are able to simulate the model’s control-

lable transitions. Additionally, if controllable (in line 2) returns a subset of the

transitions provided as parameter, the model is able to simulate the controllable

transitions of the visualisation. Thus, according to Def. 4.1, a class implementing

the interface in Fig. 5 can be used as visualisation of any model.

Both of the visualisations presented in this section have been implemented using

this interface, so despite the simplicity of the interface, it is versatile. In addition

to the examples in this paper, the interface has also been used to implement a

11

Westergaard

visualisation which automatically generates form-filling dialogues for CPN models

(this visualisation is described in [24]) as well as for ongoing work on implementing

a work-flow system on top of game CP-nets.

Fairness

If the purpose of a visualisation is to get acquainted with the model or the

modelled system, it is often reasonable to assume that a computer tool chooses

controllable transitions at random. This can often be done very quickly, however,

and this can make it difficult for the user to interact with the model. To overcome

this, we may need to impose fairness during execution of the model.

A simple way to impose fairness is to make the game turn-based: the model

makes one uncontrollable transition, followed by a user-selected controllable tran-

sition and so on until no transitions are enabled. If either of the players have no

possible moves (i.e. no controllable resp. uncontrollable transitions are enabled) the

turn is passed on to the other player. This approach is simple, easy to understand,

and easy to implement. The disadvantage is that, depending on modelling detail,

one player may gain an unfair advantage, and minor changes may make it difficult

for one player to keep up with the moves of the other. This can be seen in the

runner example in Fig. 2(a) (with T c = {b} and T u = {a}), where we always end

up in state s3 if we use this technique, as we need to first choose an a transition.

The turn is then passed on to the computer, which chooses a b transition.

Another way to impose fairness is to give controllable transitions (from the visu-

alisation’s point of view) priority over uncontrollable transitions. This particularly

useful for SceneBeans visualisations, where transitions of the model are expected to

be executed while the user is observing, but we want interaction to happen imme-

diately when the user requests it. The visualisation of the runner will do nothing

until a controllable transition has been chosen in the runner example in Fig. 2(a)

and Fig. 3. When the runner is in the state s2, at the middle of the track, a user

can force the runner along the track by clicking on the graphical representation

of the runner. If the user does nothing for a while, the computer will choose the

uncontrollable transition b, and the runner will rest.

A third way to impose fairness is to make execution of transitions take time.

A simple way to do this is to let the execution of every transition take, say, 0.1

second. The advantages and disadvantages of this approach is the same as those for

turn-based execution. A slightly more involved way to use time to impose fairness

is to use a timed formalism such as timed automata [1]. In this case, transitions

may only be enabled for a certain amount of model-time or only a certain amount

of model-time after another transition. The idea is to let model-time correspond to

real time. The advantage of this approach is that it is very general, and allows us

to get a natural feeling of the behaviour of a timed model, but the disadvantage is

that timed models may be more difficult to understand and this approach requires

a timed formalism.

12

Westergaard

5 Use of visualisations

In this section we give two examples of use of visualisations. The first example

in an industrial case study, where visualisation is used to improve a specification,

using the methodology in Fig. 1, and the second example is to an application to

verification of games, where we use visualisations to convince domain experts that

no winning strategy exists (when it is believed that it should) as well as providing

a means to find out if the error is in the specification or the formal model.

Industrial Case: Routing in Mobile Ad-hoc Networks

First, we look at an industrial application of visualisation, which uses an earlier

version of the BRITNeY Suite without support for visualisations as games. The

project is a collaboration between Ericsson Denmark A/S, Telebit and the CPN

group at the University of Aarhus. In this project the goal was not to arrive at

an implementation but rather to evaluate different techniques to facilitating com-

munication between stationary hosts and mobile nodes which may move during

communication. This means that the visualisation and formal model was actually

the product rather than a means to construct correct software. The use of a do-

main specific graphical user interface (the visualisation) has the advantage that the

design can be experimented with and explored without having knowledge of the

formal modelling language. There is still a gap from the formal model to the actual

implementation of the protocol, but the formal modelling has yielded an executable

prototype that can be used to explore the solution and serve as a basis for the later

implementation and/or formal verification of the protocol. For more details about

the project, see [12].

In Fig. 6, we see two visualisations created to visualise an interoperability pro-

tocol for mobile ad-hoc networks. The protocol ensures that mobile ad-hoc nodes

(laptops) can communicate with a stationary host when on the move via the nearest

gateway. Each gateway owns a specific sub-net of IP addresses. Based on the IP

address of an ad-hoc node, it is possible to decide which gateway to use. The basic

operation of the model is illustrated by the MSC in Fig. 6 (top). The protocol is

modelled using coloured Petri nets in a model that contains modules, 54 places and

40 transitions. Altogether the model also contains 1000 lines of inscriptions, 200

of which are used to drive the visualisation. The exact details of the protocol are

out of scope of this paper. The visualisation in Fig. 6 (bottom) makes it possible

for the user to observe the behavior of the system as packets, visualised by colored

dots, flow along the network and to provide stimuli to the protocol by dragging

and dropping the laptops to indicate the node movement. These visualisations have

been used in the project, both internally during protocol design, and externally,

when presenting the protocol to management and protocol engineers unfamiliar

with formal modeling.

The project uses the visualisations described in Sect. 4, namely a message se-

quence chart and a SceneBeans visualisation. The visualisations have been syn-

chronised with the model using annotations of the model. One of the problems we

encountered during the project, was this need to add annotations to the model. For

example, in Fig. 7, we see the annotation “input. . . ”, used to show packets flow.

13

Westergaard

Fig. 6. Visualisations used in an industrial project.

This is by far the largest annotation of the model, and clutters it unnecessarily.

Furthermore annotations have to be added for each visualisation, making it difficult

to turn off one or more visualisations, in order to focus on e.g. the MSCs. Using the

approach described in this paper, we create our visualisations and for each specify

how it should be synchronised with the model (in fact we would not need to specify

synchronisation constraints as the implementation uses conventions, such as nam-

ing, to generate these automatically), and we can then turn off each visualisation

independently and the model would be left uncluttered. Another major problem

encountered in the project was that we wanted the model to perform actions when

idle, e.g. send gateway advertisements, and react immediately when we moved a

node or wanted to send packets. We only partially solved this by polling the vi-

sualisation for changes, which made the visualisation almost work, but was never

satisfactory. Creating the visualisations as games, as proposed in this paper, mak-

ing slight changes to the model in order to make it a game (make e.g. the movement

of the ad-hoc nodes uncontrollable in the model), and using one of the fairness

constraints discussed in Sect. 4.1, it is possible to make interaction with the model

much more natural as the visualisation will we able to force actions in the formal

model as desired.

Visualising winning strategies

Hitherto, we have used visualisations primarily for validation that the formal

model reflects the intended behaviour by letting a domain expert stimulate and

observe the model using visualisations. Now, we will turn to using visualisation

for communicating the result of formal verification, i.e., convincing users that no

winning strategy exists, which is decided using an algorithm from [4] as outlined in

Sect. 3. The purpose of a counter example is to convince users that it is impossible

14

Westergaard

RoutingInformation

CmdxPacket

RoutingInformation

Route

Core
Network

I/OI/O

(RECEIVE nhipadr,
{src = srcipadr,dest=destipadr,cont=content})

(ROUTING,
 {src = srcipadr,
 dest = destipadr,
 cont = content})

input (srcipadr, nhipadr, content);
output ();
action
if String.substring (srcipadr, 13, 1) = "1"
then show_flow(srcipadr, nhipadr, content)
else show_flow((String.substring (srcipadr, 0, 16)) ^ "1",
nhipadr, content)

[("3ffe:100:3:405::","3ffe:100:3:401::3"),
 ("3ffe:100:3:406::","3ffe:100:3:401::4")]

[nhipadr =
 FindNextHop
 routinginfo destipadr]

routinginfo

Fig. 7. Part of the routing mechanism.

to have a winning strategy, so we let the domain expert assume the role of the

modelled system and let him try out ideas for winning strategies. At the same time

we let a computer tool take charge of the uncontrollable actions according to the

counter example that has been calculated. The user is urged to reach a winning state

while the tool executes uncontrollable transitions to prevent that (by ensuring that

the user is not allowed the ability to execute a transition leading to a good state).

We can do this using the formal model, but often the formal methods expert does

not have enough domain knowledge to have understand why the system should have

winning strategy, so the domain expert, who has little knowledge of the modelling

language, has to find out whether the error is in the model or in the specification.

Instead we let the domain expert control the controllable transitions of the model

using a visualisation (the computer tool is able to let the visualisation assume control

of either the controllable or uncontrollable transitions, as described in Sect. 4.1).

We let the user stimulate the model in any way seen fit (according to the supposed

winning strategy), and eventually the model will perform an unforeseen move (error

in the specification) or the model will perform a disallowed move (error in the

model).

In the example in Fig. 2(a), we may think we have a winning strategy: always

pick transition a. This leads to the winning state s4, right? The computer tool

knows that the only good state is s4, and will stay clear of it. If we let the user use

the visualisation in Fig. 3, he would first click the runner to progress to s2. The

tool then executes the b transition as it knows that s4 is good, but s3 is not. The

game is over and the user is hopefully convinced that it is impossible to ensure we

end up in a winning state.

6 Conclusion and future work

In this paper we have given a theoretical foundation for viewing visualisations as

game transition systems synchronised with formal models, providing a uniform and

general framework for coupling formal models and behavioural visualisation. We

have used game-theory to separate output from and input to the model and given

two concrete examples of visualisations. We have demonstrated how an industrial

case can benefit from using the method described in this paper. Furthermore, we

have sketched how this can be used to create counter-examples to the existence of a

15

Westergaard

winning strategy in games, so domain experts with no knowledge of the formalism

used can understand them.

Future work includes using this technique in industrial settings. The visualisa-

tions described in this paper is already distributed as part of the BRITNeY Suite,

and ongoing work on creating a detailed model of TCP/IP uses the MSC visualisa-

tion to communicate the model to protocol experts.

References

[1] R. Alur and D. Dill. A Theory of Timed Automata. TCS, 126(2):183–235, 1994.

[2] A. Arnold. Finite transition systems. Semantics of communicating systems. Prentice-Hall, 1994.

[3] C. Bossen and J.B. Jørgensen. Context-descriptive prototypes and their application to medicine
administration. In Proc. of DIS’04, pages 297–306. ACM Press, 2004.

[4] F. Cassez, A. David, F. Emmanuel, K.G. Larsen, and D. Lime. Efficient On-the-fly Algorithms for the
Analysis of Timed Games. In Proc. of CONCUR’05, volume 3653 of LNCS, pages 66–80. Springer-
Verlag, 2005.

[5] S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP Wireless Transaction
Protocol. In Proc. of ICATPN’02, volume 2360 of LNCS, pages 182–202. Springer-Verlag, 2002.

[6] B. Han and J. Billington. Formalising the TCP Symmetrical Connection Management Service. In Proc.
of DASD’03, pages 178–184. SCS, 2003.

[7] D. Harel and R. Marelly. Come, Let’s Play. Springer-Verlag, 2003.

[8] K. Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods and Practical Use. Volume 1:
Basic Concepts. Springer-Verlag, 1992.

[9] J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Adviser Portal Bank System. In
REBNITA’05, 2005.

[10] E. Kindler and C. Páles. 3D-Visualization of Petri Net Models: Concept and Realization. In Proc. of
ICATPN’04, volume 3099 of LNCS, pages 464–473. Springer-Verlag, 2004.

[11] L.M. Kristensen and K. Jensen. Specification and Validation of an Edge Router Discovery Protocol for
Mobile Ad-hoc Networks. In Proc. of INT’04, volume 3147 of LNCS, pages 248–269. Springer-Verlag,
2004.

[12] L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Prototyping of an Interoperability
Protocol for Mobile Ad-hoc Networks. In Proc. of IFM’05, volume 3771 of LNCS, pages 266–286.
Springer-Verlag, 2005.

[13] X. Liu and S.A. Smolka. Simple Linear-Time Algorithms for Minimal Fixed Points. In Proc. of
ICALP’98, volume 1443 of LNCS, pages 53–64. Springer-Verlag, 1998.

[14] J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John Wiley & Sons, 1999.

[15] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical Animation of Behavior Models. In
Proc. of ICSE’00, pages 499–508. ACM Press, 2000.

[16] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.

[17] Object Management Group. Unified Modeling Language (UML), Version 2.1.1.
www.omg.org/technology/documents/formal/uml.htm , 2007.

[18] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instrumentelle
Mathematik, 1962. Schriften des IIM Nr. 2.

[19] J.L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Simulation Utility for Design/CPN. User’s
Manual. www.daimi.au.dk/designCPN .

[20] SceneBeans. www-dse.doc.ic.ac.uk/Software/SceneBeans .

[21] The ExSpect tool. www.exspect.com.

[22] M. Weber and E. Kindler. The Petri Net Kernel. In Petri Net Technologies for Modeling
Communication Based Systems, volume 2472 of LNCS, pages 109–123. Springer-Verlag, 2003.

[23] M. Westergaard. BRITNeY Suite website. wiki.daimi.au.dk/britney/ .

[24] M. Westergaard. Game Coloured Petri Nets. In Proc. of 7th CPN Workshop, volume 579 of DAIMI-PB,
pages 281–300, 2006.

[25] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool. In Proc. of ICATPN’06,
volume 4024 of LNCS, pages 431–440. Springer-Verlag, 2006.

16

www.omg.org/technology/documents/formal/uml.htm
www.daimi.au.dk/designCPN
www-dse.doc.ic.ac.uk/Software/SceneBeans
www.exspect.com
wiki.daimi.au.dk/britney/

	Introduction
	Related work
	Theoretical background
	Visualisations as game transition systems
	Tool support

	Use of visualisations
	Conclusion and future work
	References

