
TOWARDS COSIMULATING SYSTEMC AND COLOURED PETRI NET MODELS FOR
SOC FUNCTIONAL AND PERFORMANCE EVALUATION

M. Westergaard(a), L.M. Kristensen(b), M. Kuusela(c)

(a) Department of Computer Science, Aarhus University, Aarhus, Denmark.
(b) Department of Computer Engineering, Bergen University College, Bergen, Norway.

(c) OMAP Platforms Business Unit, Texas Instruments France, Villeneuve-Loubet, France.

(a)mw@cs.au.dk, (b)lmkr@hib.no, (c)m-kuusela@ti.com

ABSTRACT
Semiconductor technology miniaturization allows pack-
ing more transistors onto a single chip. The resulting Sys-
tem on Chip (SoC) designs are predominant for embed-
ded systems such as mobile devices. Such complex chips
are composed of several subsystems called Intellectual
Property blocks (IPs) which can be developed by inde-
pendent partners. Functional verification of large SoC
platforms is an increasingly demanding task. A com-
mon approach is to use SystemC-based simulation to ver-
ify functionality and evaluate the performance using ex-
ecutable models. The downside of this approach is that
developing SystemC models can be very time consum-
ing, so we propose to use a coloured Petri net model to
describe how IPs are interconnected and use SystemC to
describe the IPs themselves. Our approach focuses on
fast simulation and a natural way for the user to intercon-
nect the two kinds of models. We demonstrate our ap-
proach using a prototype, showing that the cosimulation
indeed shows promise.

Keywords: SystemC, coloured Petri nets, cosimulation,
System on Chip

1. INTRODUCTION
Modern chip design for embedded devices is often cen-
tered around the concept ofSystem on Chip(SoC) as
devices such as cell phones benefit from the progress
of the semiconductor process technology. In these plat-
forms, complex systems including components such as
general-purpose CPUs, DSPs (digital sound processors),
audio and video accelerators, DMA (direct memory ac-
cess) engines, graphics accelerators and a vast choice of
peripherals, are integrated on a single chip. In Fig. 1, we
see an example of an SoC, namely Texas Instruments’
OMAP44x architecture (Texas Instruments 2009), which
is intended for, e.g., mobile phones. Each of the com-
ponents, calledIntellectual Property blocks(IPs), can
be contributed by separate companies or different parts
of a single company, but must still be able to work to-
gether. The IPs are designed to be low-power and low-
cost parts and often have intricate timing requirements,
making the functional verification of such systems in-

creasingly difficult. Therefore the IPs are modeled using
an executable modeling language and simulation based
validation is performed to ensure that, e.g., the multime-
dia decoder can operate fast enough to decode an incom-
ing stream before it is sent to the digital-to-analog con-
verter for playback.

When an IP is purchased for inclusion in an SoC,
one often obtains a model of the component for inclu-
sion in a whole-system simulation. Such a model is
often created using SystemC (IEEE-1666), an industry-
standard for creating models based on an extension of
C++. SystemC supports simulation based analysis and
is well-suited for making models that deal with intricate
details of systems, such as electronic signals. SystemC
has a couple of weaknesses as well, as it has no formal
semantics and therefore is not well-suited for performing
formal verification. Furthermore, SystemC is not very
well-suited for modeling in a top-down approach where
implementation details are deferred until they are needed,
and SystemC is inherently textual, making it difficult to
get and idea of, e.g., which parts of the chip are currently
working or idle, unless a lot of post-processing of simu-
lation results is performed. All of these traits make it te-
dious and time consuming to create models in SystemC,
which postpones the moment where the modeling effort
actually pays off by revealing problems in the design.

The coloured Petri nets formalism (CP-nets or
CPNs) (Jensen and Kristensen 2009) is a graphical for-
malism for constructing models of concurrent systems.
CP-nets has a formal semantics and can be analyzed us-
ing, e.g., state-space analysis (also known as state enu-
meration, reachability analysis, and model-checking) or
invariant analysis. CPN models provide a high level of
abstraction and a built-in graphical representation that
makes it easy to see which parts of the model that cur-
rently process data. The draw-back of CP-nets is that
it is not very well-suited for low-level processing as it
has to be done either as graphical notation or directly
as programming. Also, since many IP modules obtain-
able are modeled using SystemC, double effort has to be
put into making models of the obtained IPs or translating
the CPN model to SystemC for simulation along with the
purchased models.

!"#"$%&'(#)*+,)(#)&-")./,0)1)%223'4%&'(#5)*+,)6)7"3'8"$5)92)&():;<;2)%&)6;=>$%?"5)2"$)@)ABCD1)A0@)/0EF1),G0@)+H=:),0 *+,)6)"#%I3"5)%78%#4"7)?93&'?"7'%)0.JEK+KL)GFMN1;)!$%2-'45)%44"3"$%&($)%78%#4"7)!%?'#!)%#7)$'4-)6O)?%22'#!)%&)1P)2$"8'(95)GFMN6;)4($"B))6O)!$%2-'45)%#7)5922($&5)%33)&-")?%Q($),0*5R))EG)8CB;R).2"#FS)EG)8:B:R).2"#+F)8:B:)%#7)EFS)8:B6B)T-")!$%2-'45) 8'7"()%?23'U"$)>"%&9$'#!)I9'3&='#)T+)4%I3")7"&"4&'(#B),#)'#&"!$%&"7)AO/*)8:B6)&$%#5?'&&"$)%#7)7'!'&%3)T+)(9&29&5)%$")?9&9%33V)"P4395'8"R)@)@)@)@) E7!")"#-%#4"?"#&)@)@)@) ,9&(=>(495W%9&(=X-'&")I%3%#4"W)%9&(="P2(59$"@))O'!'&%3)Y((?
Main system interconnect

M-Shield™

Security
Display

controller

Non-volatile
memory

controller

Volatile
memory

controller

Peripherals
Imaging
Signal

Processor (ISP)

Video
out

ARM®

Cortex™ -A9
MPCore™

ARM®

Cortex™ -A9
MPCore™

POWERVR™
SGX540

graphics
accelerator

Audio
back-end
processor

IVA 3 Hardware
accelerator

Programmable
elements for audio

and emerging
video standards

True HD video
multi-standard 1080p

30-fps playback
and recordSymmetric

Multiprocessing
(SMP)

Processing
power for all
applications

and
no-compromise

Internet
browsing

Securing
content, DRM,

secure
runtime,

IPSec
Larger, color-rich

displays embedded
rotation engine,
multi-pipelines,

multioutput

LPDDR2, MLC/SLC
NAND, NOR Flash,

eSD, eMMC etc.

MMC/SD,
SLIMbusSM,

USBCSI, UART,
SPI, McBSP

DSC quality imaging
up to 20-megapixel
with noise filtering,

image/video
stabiliztion

Composite and
HDMI v1.3

output to drive
external displays
from the handset

Companion ICs
TWL6030
TWL6040

OpenGL® ES 2.0 to
deliver immersive user

interface, advanced gaming,
rich 3D mapping

Virtual
low power

audio IC

Power
management

Audio
management

@)/0EF=C)/0@).ZC)+0[
Figure 1: Block diagram of Texas Instruments’ OMAP44x platform.

During development of the next generation SoC,
some IPs were modeled using coloured Petri nets in-
stead of SystemC. Due to the next generation being work
in progress, we cannot go into further details about the
specifics of the model nor the modeled architecture, but
we can sum up some the experiences with using CPN
models for SoC modeling and verification. Firstly, a CPN
model has been made faster than a corresponding Sys-
temC model, making it possible to catch errors earlier in
the process and increase confidence in the new architec-
ture. The model made it possible to catch a functionality
error, and subsequent performance simulation provided
input to making reasonable trade-offs between imple-
mentation of some sub-blocks in hardware or software.
All in all, the model did provide interesting insights for a
real-life example. Unfortunately, the model also had lim-
itations. The biggest limitation is that the performance of
the connection between the modeled block and the mem-
ory subsystem could not be evaluated even though a cy-
cle accurate model of the memory system was available
in SystemC.

We see that CPN models and SystemC models com-
plement each other very well; one language’s weaknesses
are the other language’s strengths. It would therefore be
nice to be able to use the IP models in SystemC with
a more high-level model created using CP-nets. In this
way it is possible to have the SystemC models specify
the low levels of the model and graphically compose the
IPs using CP-nets, allowing us to have a high-level view
of which IPs are processing during the simulation. In this
paper we describe an architecture for doing this by run-
ning a number of CPN simulation kernels in parallel with
a number of SystemC simulation kernels, what we call a
cosimulation.

The reason for introducing our own kind of cosim-
ulation instead of relying on, e.g., the High-Level Archi-
tecture (HLA) (IEEE-1516), is mainly due to speed of de-

velopment and speed of execution; please refer to Sect. 3
for a more detailed discussion.

The rest of this paper is structured as follows: First,
we briefly introduce SystemC and CP-nets using a sim-
ple example, in Sect. 3 we present the algorithm used to
cosimulate models, and in Sect. 4 we describe a proto-
type of the cosimulation algorithm, our experiences from
the prototype, and propose an architecture of a real imple-
mentation. Finally, in Sect. 5, we sum up our conclusions
and provide directions for future work.

2. BACKGROUND
In this section we introduce the formalisms SystemC and
coloured Petri nets using an example of a simple stop-
and-wait communication protocol over an unreliable net-
work. It is not crucial to understand the details of the
languages nor the example, but just to give an impression
of models and their communication primitives.

2.1. Coloured Petri Nets
At the top level (Fig. 2) the model consists of three mod-
ules, aSender, aReceiver, and aNetwork. Before we
explain the top level, let us look at the implementation
of the receiver as a CPN model (Fig. 3). The Receiver
consists of fourplaces(namedB, C, NextRec, andRe-
ceived) with typeswritten below them (INTxDATA for
B, INT for C and NextRec, andDATA for Received)
and onetransition (namedReceive Packet). Places
can containtokenswritten in rectangles above the places
(in this example,NextRec contains one token with the
value2 andReceived contains one token with the value
”CP-”). C contains no tokens andB contains two tokens
with the more complex values(1, ”CP-”) and(2, ”net”).
Tokens can havetime stampswritten after the@-sign
to the right of the value of the token (in this example,
the token(1, ”CP-”) on B has the time stamp 69,2 on
NextRec has time stamp 113, and”CP-” on Received

Receiver

Receiver

Network

Network

Sender

Sender

D

INT

C

INT

B

INTxDATA

A

INTxDATA

Sender Network Receiver

11`2@0

2
1`(1,"CP-")@69+++
1`(2,"net")@147

11`(2,"net")@173

Figure 2: Top level of network protocol.

(n,p)

if n=k
then k+1
else k

if n=k
then k+1
else k

k

str if n=k
andalso
p<>stop
then str^p
else str

Receive
Packet

@+17

BIn

INTxDATA

COut

INT

Received

""

DATA

NextRec

1

INT

Out

In

2
1`(1,"CP-")@69+++
1`(2,"net")@147

11`"CP-"

11`2@113

Figure 3: Receiver of network protocol.

has no time stamp). There arearcs between places and
transitions. An arc from a place to a transition indicates
that in order for the transition to beenabledtokens with
the appropriate values must be available on the place(s)
(calledinput placesof the transition). When a transition
is enabled, it canoccur, and the result is that tokens are
removed from its input places and tokens are produced on
the places connected via arcs from the transition (theout-
put places). Arcs contain expressions that describe which
tokens can be moved, but we will not go into detail about
that here. A CPN model has a global clock that governs
when tokens are available; they are available if their time
stamp is less than or equal to the value of the global clock.
Transitions can have inscriptions after the@+-sign next
to the transition that describe how long they take to oc-
cur (hereReceive Packet takes17 time units to occur).
This influences the time stamp of produced tokens.

The gist of the receiver is that a packet (a pair of a
packet number and some data) arrives onB, NextRec
contains an internal counter that keeps track of which
packet we expect, andReceived contains the data we
have received until now. In this case,Receive Packet
is enabled. When it occurs, it consumes the packet from
B. The serial number of the received packet (n) is com-
pared with the number of the next expected packet (k).
If the packet is the expected one, we append the data
to Received, incrementNextRec, and transmit an ac-
knowledgement for the next packet ontoC. If we receive
another packet, we drop the packet, keep the value of the
NextRec counter, and send an acknowledgement for the
expected packet.

The top level of the protocol is shown in Fig. 2. It

consists of four places and threesubstitution transitions,
Sender, Network, andReceiver, drawn using a double
outline. The idea is that a substitution transition repre-
sents a module. Here, theReceiver substitution transi-
tion represents the receiver module from Fig. 3. Commu-
nication between the top level and the module usesport
places; in Fig. 3 we have two port places,B andC. We
can distinguish port places from normal places by the in-
scription saying eitherIn (on B) or Out (on C), which
specifies that information flows into or out of the mod-
ule. When a token is produced on theB place in Fig. 2, it
appears on theB port place in Fig. 3; in the example, we
see that bothB places indeed have the same marking.

We will not go into details about the implementa-
tion of theNetwork module, but merely say that it im-
plements a bidirectional network link that can drop and
delay packets.

2.2. SystemC
We wish to model theSender module using SystemC.
SystemC models consist of modules that are organized in
a hierarchy. Modules have interfaces consisting of ports
that can be connected to other ports using channels. In
Listing 1, we see a very simplistic SystemC version of
the sender. We define a moduleSender (l. 4) and give it
two ports,p in andp out (ll. 5–6). The sender has some
local data, a variablenextPacket (l. 39) for keeping track
of which packet to send next, and an array of all packets
we intend to send,allMes (l. 40). These are set up in the
constructor (ll. 9–12), where we also indicate (ll.14–15)
that our module has two threads,SendPacket, responsi-
ble for transmitting packets, andReceiveAck, responsi-
ble for receiving and processing acknowledgements. We
indicate that we are interested in being notified when data
arrives onp in (l. 16). The SendPacket thread (ll. 19–
26) loops through all packets, writing them top out and
delaying forsendDelay time units between transmitting
each packet. The ReceiveAck thread (ll. 28–37) receives
acknowledgements fromp in and updatesnextPacket,
so the next packet is transmitted. We see that the model
basically is C++ code and despite its simplicity still com-
prises over 40 lines of code. We would normally split the
code up in interface and implementation parts, but have
neglected to do so here in order to keep the code simple.

We need to set up a complete system in order to run
our sender. In Listing 2, we see how such a setup could
look like. We basically have a moduleTop (l. 6) which
is a simplified version of the top level in the CPN model
(Fig. 2). The top module sets up two channels (ll. 7–
8), D andA (using the same names as in Fig. 2). The
constructor initializes the sender and receiver test bench
(l. 13) and connects the ports via channels (ll.14–17). The
main method initializes the top level (l. 22) and starts the
simulation (l. 23).

Now, our goal is to use the code in Listing 1 as the
sender module in the CPN top level (Fig. 2) with the CPN
implementation of the network (not shown) and the CPN
version of the receiver (Fig. 3) in a single simulation run.

3. ALGORITHM
As our primary goal is to be able to simulate real-
life System-on-Chip (SoC) systems, which are typically
modeled on the nanosecond scale, we need to be able
to perform very fast simulation, and it is not feasible to
tightly synchronize the CPN and SystemC parts of the
model if we wish to simulate several seconds of activity.
Instead, we try to only synchronize models when needed,
i.e., when one part has done everything it can do at one
time stamp and needs to increment its clock, or whenever
information is exchanged. In the following we will refer
to CPN and SystemC simulation kernels ascomponents
in cosimulations.

Aside from requiring loose coupling between the
components, we prefer a truly distributed algorithm in or-
der to avoid having to rely on a coordinator. As a goal of
the project is to find out whether CPN/SystemC cosimu-
lation is possible, feasible, and can actually benefit mod-
eling, we also want to do relatively fast prototyping. For
these reasons, we decided to make our own implemen-
tation of cosimulation instead of using an off-the-shelf
technology such as HLA. HLA enforces a stricter syn-
chronization than we need, so by making our own im-
plementation, we believe we can achieve better perfor-
mance. Furthermore, implementing a generic HLA in-
terface for CPN models is a non-trivial task, and does
not satisfy our requirement of fast development. Finally,

Listing 1: Sender.h
� �

1 #include "systemc.h"
2 #include "INTxDATA.h"

4 SC_MODULE (Sender) {
5 sc_port<sc_fifo_out_if<INTxDATA> > p_out;
6 sc_port<sc_fifo_in_if<int> > p_in;

8 SC_CTOR(Sender) {
9 nextPacket = 1;

10 for (int i = 0; i < 2; i++)
11 allMes[i].no = i + 1;
12 allMes[0].mes = "CP-"; allMes[1].mes = "net";

14 SC_THREAD(SendPacket);
15 SC_THREAD(ReceiveAck);
16 sensitive << p_in;
17 }

19 void SendPacket(void) {
20 sc_time sendDelay = sc_time(9,SC_NS);

22 while (nextPacket < 3){
23 wait(sendDelay);
24 p_out->write(allMes[nextPacket-1]);
25 }
26 }

28 void ReceiveAck(void) {
29 sc_time ackDelay = sc_time(7,SC_NS);
30 int newNo;

32 while (true){
33 newNo = p_in->read();
34 wait(ackDelay);
35 nextPacket = newNo;
36 }
37 }
38 private:
39 int nextPacket;
40 INTxDATA allMes[2];
41 };

� �

Listing 2: scmain.cpp
� �

1 #include <systemc.h>
2 #include "Sender.h"
3 #include "ReceiverTestBench.h"
4 #include "INTxDATA.h"

6 SC_MODULE (Top) {
7 sc_fifo<int> D;
8 sc_fifo<INTxDATA> A;

10 Sender S;
11 ReceiverTestBench RTB;

13 SC_CTOR(Top): S("S"), RTB("RTB") {
14 S.p_out(A);
15 S.p_in(D);
16 RTB.p_in(A);
17 RTB.p_out(D);
18 }
19 };

21 int sc_main(int argc, char* argv[]) {
22 Top SenderReceiver("SenderReceiver");
23 sc_start();
24 return 0;
25 }

� �

HLA relies on coordinators which conflicts with our de-
sire for a distributed algorithm.

Our algorithm is shown as Algorithm 1. Basically,
it runs two nested loops (ll. 2–6 and 3–5). The inner loop
executes steps locally as long as possible at the current
time. A step is an atomic operation dependent on the
modeling formalism; for CPN models a step is execut-
ing a transition and for SystemC a step can be thought of
as executing a line of code (though the real rule is more
complex). The inner loop also sends outgoing informa-
tion to other components and receives information from
other components (here we have shown a single-threaded
implementation that exchanges information after every
step, but we can of course make a multi-threaded version
or only exchange information when it is no longer pos-
sible to make local steps). When we can make no more
steps locally, we find the allowed time increase by cal-
culating the global minimum of requested time increases
from all components.

Algorithm 1 The Cosimulation Algorithm
1: T ime← 0

2: while true do
3: while LOCALSTEPISPOSSIBLEAT(T ime) do
4: EXECUTEONESTEPLOCALLY ()
5: SENDANDRECEIVE()
6: T ime← DISTRIBUTEDGLOBAL M IN(

DESIREDINCREASE())

We note that exchange of information takes place
without global synchronization. Participants sim-
ply communicate directly and if incoming information
causes components to be able to execute more local steps
they just do so, and reevaluate how much they want to in-
crement time. This means that our synchronization algo-
rithm does not have to deal with information exchange.

4. EVALUATION
Naturally, Algorithm 1 needs to be implemented for each
kind of simulation kernel we wish to be able to use for
cosimulation. Our primary goal is to make implementa-
tions of CP-nets and SystemC models, but the algorithm
is general and can in principle be implemented for any
timed executable formalism. In order to evaluate Algo-
rithm 1 and whether CPN/SystemC cosimulation is fea-
sible, we have developed a prototype to show that is is
possible to integrate the two languages but also to show
that it is possible to make the integration without (or with
very few) changes to the SystemC kernel, as there are
multiple vendors with different implementations.

Algorithm 1 does not specify how we calculate the
global minimum required for synchronization. It is pos-
sible to do this without imposing any restrictions on the
network structure, e.g., by using flooding, but making
assumptions allows a much easier and faster implemen-
tation. As both CP-nets and SystemC models are natu-
rally structured hierarchically with components contain-
ing nested components, optionally in several layers, mak-
ing the assumption that components are structured in a
tree is no real restriction.

The architecture of our prototype can be seen in
Fig. 4. We first look at the static architecture from the
top of Fig. 4. The prototype consists of three kinds
of processes: a SystemC simulation kernel (left), an
extended version of the of the ASCoVeCo State-space
Analysis Platform (ASAP) (Westergaard, Evangelista,
and Kristensen 2009), which contains a library called
ACCESS/CPN (Westergaard and Kristensen 2009), mak-
ing it easy to interact programmatically with the CPN
simulator of CPN Tools (Ratzer, Wells, Lassen, Laursen,
Qvortrup, Stissing, Westergaard, Christensen, and Jensen
2003) (right). The yellow/light gray boxes are already
part of a standard SystemC simulation kernel, ASAP,
or CPN Tools’ simulator process and therefore does not
have to be built from scratch. We have added aCosimu-
lation layer on top of the SystemC model. The cosim-
ulation layer basically provides stubs for modules that
are external (such as a CPN model or another SystemC
model). Like with Remote Procedure Call (RPC) (Srini-
vasan 1995) systems, the stub module looks like any
other module to the rest of the system and takes care of
communicating with the other components. In the exam-
ple in Sect. 2, the stub would consist of an implemen-
tation of ReceiverTestBench referred to Listing 2 and
the cosimulation layer would consist of code like List-
ing 2 along with a communication library. Currently,
we need to write such stubs manually, but we are con-
fident that stubs can be generated automatically. The
stub communicates using ONC-RPC (Srinivasan 1995)
(formerly known as Sun RPC and available on all ma-
jor platforms) with aSystemC cosimulation job in the
middle ASAP process. For easy prototyping, we have se-
lected to do most of the implementation in Java (ASAP
is written in Java) rather than directly in SystemC (ex-
tension of C++) and CPN (written in Standard ML). The

Figure 4: The conceptual architecture (top) and run-time
architecture (bottom) of the prototype

SystemC cosimulation job andCPN cosimulation job
from the ASAP process contain most of the implementa-
tion of Algorithm 1 specific for SystemC and CPN mod-
els. Between those, we have aCosimulation action,
which takes care of starting and connecting the correct
components based on aCosimulation representation
which describes which components to use and how to
compose them. We believe that the cosimulation action
and cosimulation representation (marked in green, dark
gray) can later be reused in a subsequent real implemen-
tation. Access/CPN abstracts away the communication
between the ASAP and CPN simulator process, so we do
not have to make changes to the CPN simulator.

At run-time, a cosimulation looks like Fig. 4 (bot-
tom). Each rectangle is a running process, and each
rounded rectangle is a task running within the process,
corresponding to the blocks from the static architecture.
We see that all simulators are external and can run on
separate machines. We have implemented Algorithm 1
within the ASAP process (this in particular means that
the distributed algorithm runs within one process). We
have implemented the algorithm in full generality using
channel communication only, but as we were not con-
cerned with speed in our prototype, decided against set-
ting up a truly distributed environment in the prototype.

The only non-trivial part is how to do the minimum
calculation in line 6 of Algorithm 1. Our algorithm uses
that the components are organized in a tree, and we will
use normal tree terminology (root, parent, and children).
Naturally, each node knows how many children it has and
its parent. The idea is that each node requests a time in-
crease from its parent. The parent then returns the allot-
ted time increase. When a node wants to increase time,
it waits for all its children to request a time increase.
It takes the minimum of all of these votes (including
its own) and requests this time increase from its parent.
When it receives a response from the parent, it announces
this increase to all children. The root just announces to
all children without propagating to its (non-existing) par-
ent. The algorithm can be improved in various ways. For

Figure 5: The conceptual architecture (top) and run-time
architecture (bottom) of real implementation

example, as soon as a node realizes that only the mini-
mum time increase can be granted (0 or 1 depending on
whether we allow requesting a zero time increase), it can
just announce the result to all children and continue prop-
agating up in the tree. Also, a parent node need not actu-
ally announce the lowest time increase. It can announce
the time increase requested by the node that has the sec-
ond lowest request minus one, and sub-trees can then au-
tonomously proceed (knowing that other sub-trees will
not be able to proceed as they cannot receive data since
information flows only up and down the tree).

For a real implementation we propose the much sim-
pler architecture from Fig. 5. In this architecture, we
have removed the centralized process and instead made
real implementations of theCosimulation layer for both
SystemC and CPN. We have also replaced ONC-RPC
with Message Passing Interface (MPI) (Message Pass-
ing Interface Forum 1997) which is an industry standard
for very fast communication between distributed compo-
nents. In order to use MPI, we will have to embed a
standard MPI implementation into the SML run-time and
add code to interface with that from SML code. The run-
time behaviour is as one would expect. Instead of having
the communication being mediated by ASAP, ASAP now
just sets up a cosimulation, and the components commu-
nicate directly with each other, and ASAP can process
the results after simulation.

One of our design goals was that we did not want to
change the SystemC kernel. Instead, we have created a
cosimulation layer as a regular SystemC process, so our
prototype shows that this is feasible. For efficient imple-
mentation we probably need to augment the CPN simu-
lator, but that is less of a problem, since we have control
over it. Our implementation shows that the algorithm has
the potential to provide efficient cosimulation and that
it is possible to get meaningful results from the compo-
nents of the model (currently we just extract log files,
but it should be easy to map these back to the models,
mostly for the CPN models to get graphical feedback).
As a bonus, our prototype shows that it is possible to do
reasonable distributed simulation of CPN models.

5. CONCLUSION AND FUTURE WORK
In this paper we have described an algorithm for cosim-
ulation of CPN and SystemC models for verification of
SoC platforms. The algorithm allows loose coupling
between different simulation kernels, which we believe
provide faster simulation. We believe that the prototype
looks interesting and is worth pursuing further. The pro-
totype has even provided some unforeseen benefits, such
as distributed simulation of CPN models.

We have already mentioned that the High Level Ar-
chitecture (HLA) provides similar features. HLA, how-
ever, has some problems that we wish to avoid. The main
reason for not using HLA for the prototype was that it
is too complex to get working code up and running fast.
We also believe that the relatively tight coupling between
the components of HLA is undesirable for performance
reasons. Finally, our proposed system is completely dis-
tributed, whereas HLA has centralized components. Our
distributed approach allows more decoupling, improves
scalability, and provides a simpler implementation.

Future work includes making a real implementation
as proposed in the previous section. We have not cur-
rently implemented all of the optimizations to the dis-
tributed minimum calculation described in the previous
section, and these should be implemented and evaluated.
It would be interesting to take compare a real implemen-
tation with an implementation using HLA for cosimula-
tion of CPN and SystemC models, which would require
making an implementation of HLA for CPN models. Fi-
nally, we have until now only dealt with simulation of
composite models. It would be interesting to also look at
verification, e.g., by means of state-spaces, which seems
quite promising as modular approaches for CP-nets per-
form very well when systems are loosely synchronized,
which is indeed the case here.

ACKNOWLEDGEMENTS
This work is in part supported by the Danish Research
Council for Technology and Production.

REFERENCES
IEEE-1516, Modeling and Simulation High Level Archi-

tecture.
IEEE-1666, IEEE Standard System C Language Refer-

ence Manual.
Jensen, K. and Kristensen, L.M., 2009,Coloured Petri

Nets – Modelling and Validation of Concurrent Sys-
tems, Heidelberg: Springer-Verlag.

Message Passing Interface Forum, 1997,MPI-2:
Extensions to the Message-Passing Interface,
http://www.mcs.anl.gov/research/projects/mpi/mpi-
standard/mpi-report-2.0/mpi2-report.htm [Ac-
cessed 8 June 2009]

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M.,
Qvortrup, J.F., Stissing, M., Westergaard, M.,
Christensen, S., and Jensen, K., 2003, CPN Tools
for Editing, Simulating, and Analysing Coloured
Petri Nets,Proceedings of the Petri Net Conference,

pp. 450–462, June, Eindhoven, The Netherlands.
Srinivasan, R., 1995,RPC: Remote Procedure CAll Pro-

tocol Specification Version 2, RFC 1831.
Texas Instruments, 2009, OMAPTM Applica-

tions Processors: OMAPTM 4 Platform,
http://www.ti.com/omap4 [Accessed 8 June
2009]

Westergaard, M., Evangelista, S., Kristensen, L., 2009,
ASAP: An Extensible Platform for State Space
Analysis,Proceedings of the Petri Net Conference,
pp. 303-312, June, Paris, France.

Westergaard, M., Kristensen, L., 2009, The Access/CPN
Framework: A Tool for Interacting With the CPN
Tools Simulator,Proceedings of the Petri Net Con-
ference, pp. 313-322, June, Paris, France.

AUTHORS BIOGRAPHY
Michael Westergaard is a PostDoc at Aarhus Univer-
sity, Denmark, where he obtained his PhD in Computer
Science in 2007. He is working with modeling and anal-
ysis of concurrent systems using coloured Petri nets, and
in particular analysis by means of state space exploration.
He is involved in development of tools as well as algo-
rithms to facilitate state space exploration for real-life
systems, in particular CPN Tools and the ASAP model
checking platform, and the ComBack state space method.
Lars Michael Kristensen is Professor in Computer En-
gineering at Bergen University College. He has more
than 10 years of research experience in development and
application of formal methods to concurrent systems. A
main focus has been the theoretical foundation of state
space methods and their implementation in computer
tools, in particular in the context of Coloured Petri Nets.
Important research contributions have been the develop-
ment of the sweep-line state space space method, the de-
velopment of two variants of the stubborn set partial-
order method, and the development of the ComBack
method. A strong focus has also been on evaluating the
research results in industrial cooperation projects. He
acted as researcher in the development of the state space
tools of Design/CPN and CPN Tools, and he is the sci-
entific leader of the ASCoVeCO project in the context of
which the ASAP model checking platform is being de-
veloped. He has recently co-authored a new textbook
on Coloured Petri Nets published by Springer-Verlag.
In 2007 he received the Danish Independent Research
Councils’ Young Researcher’s Award.
Maija Kuusela received her M.Sc. degree in Informa-
tion Technology from Helsinki University of Technol-
ogy, Finland in 1981 and her PhD degree in Mathematics
from Duke University, North Carolina in 1986. During
her professional carrier she has held positions at Nokia
Research Center in Helsinki, Finland and at Texas In-
struments France. Her current post as systems architect
at OMAP Platforms Business Unit at Texas Instruments
France includes modeling and performance evaluation of
multiprocessor platforms and multimedia accelerator ar-
chitectures.

