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Abstract. Coloured Petri nets (CP-nets or CPNs) is a useful modeling
formalism for formally describing concurrent systems, and CPN Tools
provides a mature environment for constructing, simulating, and per-
forming simple analysis of CPN models. Sometimes, this does not suffice,
however. For example, if one wishes to extend the analysis capabilities or
to integrate CPN models into other programs. In this paper we present
two new interfaces which facilitate this. One is written in Standard ML
and is very close to the simulator component of CPN Tools, providing
a solid foundation for developing advanced analysis tools. The other in-
terface is written in Java and provides an object-oriented representation
of CPN models as well as a means to load models created using CPN
Tools. Furthermore, the Java interface provides a high-level interface to
the simulator component facilitating integration of simulation of CPN
models into other programs. We illustrate the interfaces by providing
the complete implementation of a command-line state space exploration
tool. The interfaces are available to interested parties.

1 Introduction

Coloured Petri nets (CP-nets or CPNs) provide a useful modeling formalism
for formally describing concurrent systems, such as network protocols [12] or
work-flows in companies [8]. CPN Tools [14] provides a mature environment for
editing and simulating CPN models, and to a limited degree also for formally
verifying that a given model is correct using state space analysis.

Sometimes, this is not enough, however. The basic problem is that CPN Tools
is inherently graphical and cannot be controlled by outside applications. This
makes it difficult to use CPN Tools in settings that are outside its scope of inter-
active use by one user. Such examples include repeated simulation on multiple
servers in a grid, which is a useful analysis technique for models that are too
large for exhaustive analysis techniques like state space analysis, to describe a
complex decision procedure in a parametrised manner for use in a regular ap-
plication, and allowing users to set parameters of a model using a custom user
interface and just present the end-result of a simulation. It is also difficult to
implement new analysis techniques such as new more efficient state space meth-
ods or completely different analysis methods (e.g., coverability graphs, bounded
model-checking techniques, or invariant analysis), especially if we intend to also
build a user-friendly interface for the new methods.
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Fig. 1: Architecture of CPN Tools.

CPN Tools basically consists of two components (see Fig. 1), a graphical edi-
tor (middle) and a simulator daemon (right). The graphical editor allows the user
to interactively construct a CPN model. The model is transmitted to the simu-
lator daemon, which checks it for syntactical errors and generates model-specific
code to simulate the model. The graphical editor can invoke the generated sim-
ulator code and present the results graphically. The graphical editor can also
load and save models using an XML format (left in Fig. 1). The graphical editor
imposes most of the previously mentioned restrictions; the simulator daemon is
basically a generic Standard ML/New Jersey (SML/NJ or SML) [15] run-time
environment and compiler with functions for syntax checking CPN models. It
is obvious that by replacing the graphical editor with our application, we can
alleviate most of the limitations imposed by the graphical editor, and this has
indeed also been done in different settings [10,16]. The CPN simulator, however,
suffers from two problems making such a replacement difficult. Firstly, the pro-
tocol used for communication between the graphical editor and the simulator
is rather low-level and complex to implement. Secondly, the CPN simulator is
optimised for simulation and incremental code generation making it difficult to
use for other purposes as the model-specific code is difficult to use.

In this paper we propose two new interfaces to the CPN simulator'. Neither
aim to replace CPN Tools as editor for CPN models, but rather to allow people to
make experiments with the formalism. Both of the interfaces have been developed
as part of the ASCoVeCo [1] project and the ASAP model checking platform [11],
but are believed to be useful in other settings as well. Neither of the interfaces are
intended for end-users; both of the interfaces provide rather low-level simulation
primitives, which can be used by programmers to build new generic tools. We
present the interfaces in the context of formal verification because that has been
our motivation for developing the interfaces, but numerous applications can build
upon the foundation to allow more high-level use of the CPN simulator. One of
the interfaces is written in Java and the other in SML. In Fig. 2 we see how
the new interfaces augment and replace parts of CPN Tools. The Java interface
(middle) consists of an object-oriented representation of a CPN model, the ability
to transmit this representation to the simulator and to programmatically perform
simulation and inspection of the current state in the simulator. Furthermore,
it includes an importer module which can import models created using CPN
Tools. In effect, this allows programmers to load a model created using CPN
Tools (left), instantiate a simulator for this model and perform simulation of the

! The interfaces are available to interested parties; send an email to ascoveco@cs.
au.dk for more information.
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Fig. 2: Architecture of new interfaces.

model in their own applications, which can be anything from a simple command-
line utility to a full-fledged CPN editor. The SML interface (right in Fig. 2)
encapsulates the complex data-structures used in the simulator, and provides a
simple frozen interface to the state of a CPN model which facilitates very fast
simulation. This is in particular useful for efficient analysis, e.g., by means of
state spaces, but applicable for any application that requires fast execution of
transitions with little or no user-interaction.

The rest of this paper is structured as follows: In the next section, we in-
troduce a simple example, that is used throughout this paper. In Sect. 3, we
describe the SML interface to the simulator, and in Sect. 4, we describe the Java
interface to the simulator. These two sections are independent of each other. In
Sect. 5 we use the two interfaces to create a simple command-line tool for state
space analysis of CPN models. Finally, in Sect. 6, we sum up our conclusions
and provide directions for future work.

2 Example CPN Model

Throughout this paper we will use a CPN model of a simple stop-and-wait
protocol with one sender and two receivers. The top module of the model can be
seen in Fig. 3, where we have a substitution transition for the sender, the network,
and one for each receiver. The network has a maximum capacity modeled by the
Limit place. If the network still has available capacity, the sender (Fig. 4 (left))
transmits packets onto the A place. The place Send contains the packets to
send. The network (Fig. 4 (middle)) then transmits the packet to B1 and B2,
optionally dropping one or both of the packets. The receivers (Fig. 4 (right))
receive the packets on Received and transmit back acknowledgements onto C1 or
C2, which the network transmits to D, optionally dropping one or both. When
the sender receives acknowledgements from both receives, the NextSend counter
is updated and the cycle restarts. We observe that the model consists of four
different modules: Top, Sender, Network, and Receiver. The Receiver module is
instantiated twice as Receiver 1 and Receiver 2 in the module Top.
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Fig. 3: Top page of a simple stop-and-wait protocol model with two receivers.
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Fig.4: Sender (left), network (middle), and receiver (right) modules of the protocol.

3 The SML CPN Model Interface

In this section we present the old SML interface to the simulator and some
of its shortcomings. We also present our new interface and explain why it is
superior. The aim of the SML model interface is to provide efficient access to the
CPN simulator, in particular with the purpose of implementing efficient analysis
methods. To support this, the SML interface provides an interface to the state of
a CPN model and to execute enabled transitions. For performance reasons, this
interface is written in the same language as the CPN simulator itself, namely
SML/NJ [15]. We suggest that all applications that are algorithmic in nature use
the SML interface described in this section. Using SML as implementation may
seem a bit strange as it is not as well-known as, e.g., Java. The choice makes
sense, however, both because this interface is the fastest as it is written in the
same language as the simulator itself and because SML is a useful language for
declaratively implementing complex algorithms due to its functional paradigm.



3.1 The Old SML Interface

In Listing 1.1 we see part of the current interface for the model in Figs. 3 and 4.
In lines 1-10 we see the definition of the place NextRec in the module Receiver.
We first notice that the relationship to the place and module is not immediately
visible, as the place is only referred to by a generated identifier (CPN'placeid168).
All places reside at the top level, so the modularity of the model is not visible in
the interface. The functions get and set (Il. 7-8) take as parameter an instance
number, which is the internal number of the instance of the place. This number
is not immediately derivable from the model (we have, e.g., no guarantee that
the instance corresponding to Receiver 1 has number 1). The ims.cs ms type is a
multi-set over the type of the place, in this case NO.

The rest of Listing 1.1 shows representations of three different transitions,
Send Packet from Sender (1. 11-15), Transmit Acknowl from Network (11. 16-21),
and Transmit Packet from Network (1l. 22-29). Like places, all transitions are
referred to by a generated identifier rather that their user-recognisable name.
Transitions, like places, live at the top-level, and the CPN'occfuns (1l. 12, 17-18,
and 23-25) take an internal instance number as the first parameter. The last
parameter given to CPN'occfun is a boolean indicating whether the step-counter
should be incremented. This is used internally by the simulator for handling mon-
itors, and during normal simulation should always be set to true. The middle
parameter to a CPN'occfun describes the binding of the variables of the transi-
tion. For Send Packet, this consists of a record containing all variables. The two

Listing 1.1: Current interface.

1 | structure CPN'placeid168: sig

2 structure ims: sig

3 structure cs: COLORSET

4 type cs = cs.cs

5 (* 1 type definition and 22 functions *)

6 end

7 val get: int -> ims.cs ms

8 val set: int -> ims.cs ms -> unit

9 (* 2 constants and 8 functions *)

10 | end

11 | structure CPN'transitionID1264271480: sig

12 val CPN'occfun: int * {n:NO, p:DATA} * bool -> CPN'Sim.result * string list
13 val CPN'bindings: int -> {n:NO, p:DATA} list

14 (* 5 constants, 3 variables, and 6 functions *)

15 | end

16 | structure CPN'transitionID1264276591: sig

17 val CPN’occfun:

18 int * ({mNO} = BOOL) * bool -> CPN'Sim.result * string list
19 val CPN'bindings: int -> ({n:NO} * BOOL) list

20 (* 5 constants, 3 variables, and 6 functions *)

21 | end

22 | structure CPN'transitionlD1264276586: sig

23 val CPN'occfun:

24 int  * ({m:NO, p:DATA}  * {successl:BOOL, success2:BOOL}) * bool
25 -> CPN’'Sim.result * string list

26 val CPN'bindings:

27 int -> ({n:NO, p:DATA} * {success1l:BOOL, success2:BOOL}) list
28 (* 5 constants, 3 variables, and 6 functions *)

29 | end




transmit transitions are more complex. The technical reason is that, in the case
of the Transmit Acknowl, the variables n and successl are not correlated in any
way, and can be bound independently, so by separating them it is possible to
find legal bindings for the transition more efficiently. The CPN’occfun for Trans-
mit Packet is just a more complex example of this. The result of CPN'occfun is
a result from the simulator, indicating whether the transition was successfully
executed, whether the transition was disabled, or whether the transition was
not enabled a the current time stamp (for timed models). Additionally, a list of
descriptive error messages may be returned. All transitions also have a function,
CPN'bindings (11. 13, 19, and 26-27), which given an instance number returns a
list of all enabled bindings using the same grouping of variables as CPN’occfun.

This interface is well-suited for high-performance simulation and incremental
code generation. By distributing the state to multiple structures, it is possible to
update only markings of places affected by the execution of a given binding ele-
ment (transition with associated binding of all variables), making the execution
independent of the size of model. This also makes the enabling calculation more
efficient, as the enabling is only affected for transitions connected to modified
places (and we can even exploit monotonicity of enabling to further improve
the enabling calculation). Furthermore, as all places and transitions are repre-
sented as separate structures, incremental code generation is independent of the
size of the model. Adding a place or transition simply means we have to add a
new structure. Modifying a transition only requires the regeneration of a single
structure, and modifying a place only requires that we regenerate the structure
corresponding to the place and all structures corresponding to transitions con-
nected to the place, which is in practise a low number. Finally, during simulation,
we are just interested in whether a transition is enabled, and, if so, to execute
one enabled binding element. This is greatly facilitated by grouping the variables
of transitions, as there is no reason to calculate all binding elements, which can
be found as elements of the Cartesian product of elements of each group.

The properties of the interface facilitate an editor with incremental syntax
check and efficient simulation of CPN models, but the requirements for a state
space tool are different as we are dealing with many states (as opposed to just
one during simulation), requiring that it is possible to represent more than one
state. Also, we need to obtain all enabled binding elements in a given state. As
the state is distributed across multiple structures in the old interface, it is diffi-
cult to represent more than one state at a time, as we would need to traverse all
structures to read the marking of each place. As the enabling calculation of tran-
sitions is distributed across many structures, gathering all enabled transitions
requires checking enabledness of transitions individually. Finally, the old inter-
face is not very user-friendly, as we refer to all nodes using internal generated
names and instance numbers not easily obtainable by the user.

3.2 The New SML Interface

Instead, we define a completely new interface to CPN models. The interface is
designed with state space analysis in mind, but can of course be used for other



Listing 1.2: Model interface.

1 | signature MODEL =sig

2 eqt ype state

3 eqtype event

5 except i on EventNotEnabled

7 (* Get the initial states and enabled events in each state *)
8 val getlnitialStates: unit -> (state * event list) list

10 (* Get the successor states and enabl ed events in each successor state x)
11 val nextStates: state * event -> (state * event list) list

13 (* Execute event sequence, return resulting states and enabl ed events  *)
14 val executeSequence: state * event list -> (state * event list) list

16 (* String representations of states and events *)
17 val stateToString: state -> string

18 val eventToString: event -> string

19 | end

purposes. The interface is designed to be independent of the actual formalism
at the most abstract level, which allows us to build tools that are formalism-
independent. The entire interface can be seen in Listing 1.2. The interface defines
the concepts of states and events (1. 2-3). The most important functions are ge-
tinitialStates (1. 8) and nextStates (1. 11). getInitialStates returns the list of initial
states. The reason that this is a list and not just a singleton state is to support
non-deterministic formalisms. In addition to the state, we also return a list of en-
abled events for each initial state. The reason for this is that it makes it possible
to optimize enabling calculation during depth-first traversal. nextStates takes as
argument a state and an event and returns the successors using the same format
as getlnitialStates. If the given event is not enabled, the exception EventNotEn-
abled (1. 5) is raised. Additionally, the interface has a function for executing a
sequence of events, executeSequence (1. 14), which works like nextStates, except it
can execute zero, one, or more events rather than just one. Finally, the interface
contains two functions, stateToString and eventToString (11. 17-18) for converting
states and events to a user-readable string.

State Representation. The interface in Listing 1.2 is formalism-independent.
In order to instantiate the interface for CPN models, we need to define the types
state and event, and define the functions in the interface.

As mentioned earlier, we need to be able to represent multiple states in a
state space tool. To increase familiarity for previous users of the state space tool
of CPN Tools [14], we define a structure Mark with data types and functions
for manipulating states. We do not want to distinguish between the type used
internally and the type manipulated by users in order to alleviate the need for
translating between different representations, so the type should closely reflect
the underlying CPN model. In Listing 1.3, we see (most of) the Mark structure
for the model in Figs. 3 and 4. The type of the state is defined inductively in
the hierarchy of the model. For each page, we define a record, which contains



Listing 1.3: New state representation.

structure Mark : sig
type Sender = {NextSend: NO ms}
type Network = {}
type Receiver = {NextRec: NO ms}
type Top = {A: NOXDATA ms, B1l: NOXDATA ms, B2: NOxDATA ms, Cl: NO ms,
C2: NO ms, D: NOXNO ms, Limit: UNIT ms, Received_1: DATA ms,
Received_2: DATA ms, Send: NOXDATA ms, Network: Network,
Receiver_1: Receiver, Receiver_2: Receiver, Sender: Send er}
type state = {Top: Top, time: time}
val get'Top’Receiver_1'NextRec : state -> NO ms
val setTop’Receiver_1'NextRec : state -> NO ms -> state
val get'Top’Receiver_2'NextRec : state -> NO ms
val set'Top’Receiver_2'NextRec : state -> NO ms -> state
val getTop’Receiver_1'B : state -> NOxDATA ms
val setTop’Receiver_1'B : state -> NOxDATA ms -> state
(* several nore accessor functions *)
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entries for all places and sub-pages of the page. For example, in Listing 1.3 1. 2
we see the record defined for the Sender page in Fig. 4 (left). We see that we
have only included “real” places, i.e., the four port places are not included so
only the NextSend place is present. The type uses the names used in the model,
and NextSend is thus represented using the record entry NextSend. The type of
the NextSend is NO ms, i.e., multi-sets over the color NO of the place NO. The
multi-set type is the same as used by CPN Tools. Similarly, types are defined
for Network (1. 3), which contains no non-port places, and Receiver (1. 4), which
contains one non-port place. The Top page is more complex (Il. 5-8), but uses the
same structure. It contains entries for all non-port (i.e., all) places (I. 5-6), but
also entries for all sub-pages (1. 6-8). The entries for sub-pages are named after
the substitution transition and the type is that of the sub-page. For example,
we see that the sub-page defined by the substitution transition Receiver 1 is
represented by the entry Receiver_1l of type Receiver. Finally, at the top-level,
we define the type of the state itself. As it is possible for a model to contain
more than one top page, we define a new top level (1. 9), which contains all top
pages (in this case just one entry Top of type Top). The state type also contains
an entry for all reference declarations (in this model there are none) and the
model time. As an example, we see the initial state of the network protocol in
Listing 1.4.

State records, like the one in Listing 1.4, can be used as is, i.e., by using SML
pattern matching or built-in accessor functions to pull values out of the record,
or by building new structures with the correct names. For the user convenience,

Listing 1.4: Initial state of network protocol.

1 | val initial = { Top = {

2 A = empty, B1 = empty, B2 = empty, C1 = empty, C2 = empty, D = empty ,

3 Limit = 3‘(), Received_1 = 1", Received_2 = 1™, Send = 1'( 1,"COLOUR")++
4 1(2,"ED PET")++1'(3,"RI NET"), Network = {}, Receiver_1 = {NextRec = 1'1},

5 Receiver_2 = {NextRec = 1‘1}, Sender = {NextSend = 1‘1} }, tim e=01}




we have also created set- and get-functions to access all pages and places of
the structure. These functions all use the same naming convention, which is the
function name (get or set) followed by a quote ('). Then comes the complete
path to the place or page we wish to access, separated by quotes. The functions
take a complete state as argument. Getter functions return either a multi-set of
the appropriate type or a record describing the selected page. Setter functions
instead take an additional parameter of the correct multi-set or record type and
returns a new state, which is identical to the one given as the first parameter,
except that the selected place/page marking has been replaced. Examples of
setter and getter functions can be seen in Listing 1.3 in 11. 10-15. In addition to
providing accessor functions for the “real” places represented in the state record,
we also provide accessors which provide access to port and fusion places, so it is
possible to use, e.g., get'Top’Receiver_1'B, to get the marking of the port place
B in the receiver module. This function looks up the value on the corresponding
socket place. This function is identical to get' Top'B1.

Event Representation. For events, we must make a choice between ease of use
and compositionality. We first outline the obvious hierarchical approach to events
and some of the problems of that. Then we describe our current implementation,
which is not hierarchical (and thus does not as easily support compositionality).

The hierarchical event representation (Listing 1.5) is the natural companion
to the state representation. Instead of types and records, we use structures and
data types. For each page, we have a structure defining a data-type with a
constructor for each transition and substitution transition. The type of each

Listing 1.5: Hierarchical representation of events.

1 | structureBind : sig

2 structure Top : sig

3 structure Sender : sig

4 dat at ype event = Send_Packet of {n: INT, p: STRING}
5 | Receive_Acknow of {k: INT, nl: INT, n2: INT}
6 end

7 structure Network : sig

8 dat at ype event =

9 Transmit_Packet of

10 {n: INT, p: STRING, successl: BOOL, success2: BOOL}
11 | Transmit_Acknowl of {n: INT, successl: BOOL}

12 | Transmit_Acknow2 of {n: INT, success2: BOOL}

13 end

14 structure Receiver : sig

=
o

dat at ype event =
Receive_Packet  of {k: INT, n: INT, p: STRING, str: STRING}
end
dat at ype event = Sender of Sender.event
| Network of Network.event
| Receiver_1  of Receiver.event
| Receiver_2 of Receiver.event
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end
dat at ype event = Top of Top.event
end
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constructor contains either a record with all variables (for normal transitions)
or a reference to a previously defined data-type (for substitution transitions).

While this type definition is nice and natural, it has the major deficit that
it is very cumbersome to use. The problem is that while data-type constructors
are scoped, they are not context-sensitive. Thus, to refer to the transition Re-
ceive Acknow on the Sender page, we would need to write Bind.Top.Sender
Bind.Top.Sender.Receive Acknow {k, nl, n2 1}, and the verbosity and
redundancy only gets worse if we have deeper hierarchies. We cannot solve this
problem by opening all structures unless we require that all transitions, globally
in the model, have unique names, and this is against the locality inherent in
Petri nets.

Instead, we define a data-type as in Listing 1.6. We define a constructor for
each transition named after the page it resides on and the name of the transi-
tion. The type of each constructor is a pair of an instance number and a record
containing all variables associated with the transition. This definition is not as
natural as the hierarchical one, and it re-introduces the “magic” instance num-
bers. To alleviate the introduction of instance numbers, we also define symbolic
constants (11. 10-14) for the path to each page instance. Using this, we can refer to
the Receive_Acknow transition on Sender as Bind.Sender'Receive _Acknow
(Bind.Top.Sender, {k, n1, n2 }), where only Bind and Sender are re-
peated, and the latter only because the substitution transition has the same
name as the page.

A final way to represent events is to create a data-type with a constructor for
each transition instance, named after the path leading to the transition instance.
While this is nice to use at first sight, it is even less compositional than both
of the previous representations, and has the problem of making two instances of
the same transition have completely different constructors.

3.3 Optimizations

A thing to notice about the representation of the state in Listing 1.3 is that it
is immutable, i.e., that it is impossible to change markings of individual places

Listing 1.6: New representation of events.

1 | structure Bind : sig

2 dat at ype event =

3 Network'Transmit_Acknow1 of int * {n: INT, successl: BOOL}

4 | Network'Transmit_Acknow?2 of int * {n: INT, success2: BOOL}

5 | Network'Transmit_Packet of

6 int  * {n: INT, p: STRING, successl: BOOL, success2: BOOL}

7 | Receiver'Receive_Packet of int * {k: INT, n: INT, p: STRING, str: STRING}
8 | SenderReceive_Acknow of int * {k: INT, nl: INT, n2: INT}

Sender'Send_Packet of int * {n: INT, p: STRING}
val Top : int
val Top'Network : int
val Top'Receiver_1 : int
val Top'Receiver_2 : int
val Top'Sender : int
end
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in a state without creating a completely new state. This is a nice property we
can use to make several optimisations. Immutability allows us to use the same
representation internally as we expose to the user, as the user is not able to
modify the representation. This has the great advantage that we do not need
to translate between different representations in a state space tool (as happens
in CPN Tools, where the exposed representation of a state is a Node, which is
really an integer pointing into a mutable tree). Having the same representation
internally and externally also lowers the barrier for users to become developers
and experiment with more advanced aspects of state space reduction methods.

The implementation of the most interesting function from the interface in
Listing 1.2, nextStates is implemented as in Listing 1.7. The setState function
(not shown) basically copies the state record into the simulator. execute contains
a large switch, which calls the correct CPN'occfun with the right parameters,
and getState (not shown) reads the simulator representation and constructs a
state record. The implementation is in fact slightly more intelligent. setState and
getState keep track of the latest state record copied to/from the simulator. This
improves performance a lot, in particular when doing depth-first traversal, as we
will, most of the time, want to compute successors of a successor of the state
currently stored in the simulator. As we have already calculated successors of
this state and do not change it, the simulator is able to use locality to more
efficiently calculate the desired successors. By exploiting immutability of the
state record we can re-use parts of it to do even better by combining it with
locality to implement BDD-like data-structure, which is essentially a faster but
less memory efficient implementation of the tree-based storage of CPN Tools [2].
Assume we are given a state-record, e.g., the initial state from Listing 1.4. When
we execute the Send Packet transition on Sender, we know (statically), that we
can only change A and Limit on Top. We can thus re-use the representation of all
other places at the top level and the representation of all sub-pages by making
getState used in Listing 1.7 dependent on the event. This not only alleviates
the need to transfer state from the simulator to the new state records, it also
makes equality tests faster by reducing to pointer comparison for sub-pages and
unchanged places. Furthermore, re-using old representations conserve memory.
This does not ensure that we only store the multi-set 1'1 once (and is hence not
as memory efficient as the representation of CPN Tools), but on the other hand
does not spend any time trying to unify multi-sets that are almost the same. This
can also be exploited in the other direction. When asked to compute successors
for a certain state, we only need to transfer pages and places that have actually
changed (by changing the implementation of setState used in Listing 1.7). All
of this can be done completely independently of the interface, without making
explicit whether the interface is implemented in the most naive way or whether
locality-optimisations take place (except for faster execution in the latter case).

Listing 1.7: Implementation of nextStates function.

1 | fun nextStates (state, event) =
2 (setState state; execute event; getState())




3.4 Auxiliary Functions

In order to provide the interface in Listing 1.2, we need to generate model-
specific functions; basically the getState, execute, and setState functions used
in Listing 1.7. Furthermore, we need to generate the Mark and Bind structures.
The CPN simulator contains a set of tables, which can be used to inspect the
model, but these tables are optimized for incremental syntax-check and fast
simulation, and are therefore not very easy or fast to traverse. We have therefore
developed an interface to the static part of the model, i.e., the pages with places,
transitions, arcs, and all annotations of each. This interface can also be used
for other purposes. We have already used it to generate model-specific hash-
functions, marshaling of states and events, and ordering of states and events.

The generated hash-functions calculate hash values inductively in the struc-
ture of the model. We build “strings” on several levels, from multi-sets as strings
of tokens (which may again be strings of simpler values), over pages as strings
of places (multi-sets), to models as strings of pages. Using a simple combinator
function which can calculate the hash value of a string given the hash values of
each of it elements and hash-functions for all simple types, we can calculate a
hash value for an arbitrary CPN model in a very efficient way. Furthermore, by
using different combinator functions, we can efficiently generate multiple linearly
independent hash functions. Such hash functions are useful for many things, such
as putting states into hash tables (implementing full state space traversal), stor-
ing only a hash-value for each state (implementing hash compaction), or using
the hash-value to set a bit in a bit-array (implementing bit-state hashing).

Marshaling is implemented using a strategy similar to the hash function. If
we know how to store each character of a string, we can store the entire string
by writing the length of the string and each character. Marshaling is useful
for storing states to disk (implementing various disk-based state space traversal
algorithms), or for transmitting states over a network (implementing distributed
state space traversal).

Ordering is also implemented using the same strategy, by basically induc-
tively defining a lexicographical order. Orders are useful for storing states to
disk, as it is often useful to sort states when storing them on disk. It is also
useful for storing states in search trees, which is used by many algorithms built
into Standard ML, such as algorithms for calculating strongly connected com-
ponents of graphs, which is useful for determining certain liveness properties of
CPN models.

4 The Java CPN Model Interface

As mentioned in the introduction, many applications can benefit from tight in-
tegration with CPN models and the CPN simulator. If such applications are
algorithmic in nature, we suggest using the SML interface described in the pre-
vious section, as it does not have the overhead of communication via TCP/IP.
For most other applications, we propose that the Java interface described in this



section is used as the overhead is irrelevant for many applications. The Java
interface provides a high-level object-oriented representation of CPN models as
well as an implementation of the protocol used by the CPN Tools graphical
editor to communicate with the CPN simulator. As we furthermore provide an
importer package that is able to read models created with CPN Tools, this inter-
face makes it possible to create tools that load, manipulate, and simulate CPN
models. Applications with these purposes often need to provide a user-friendly
user interface or integrate with other applications. For these reasons, we have
decided to create this interface in Java, which is widely used and provides many
frameworks and tools for creating user-friendly applications.

4.1 Object Model

The CPN object model is a cleaned-up re-implementation of the model of the
BRITNeY Suite [16], created for the ASAP model checking platform [11]. ASAP
builds on the Eclipse platform [4], and so it is natural to use Eclipse frameworks
for the implementation of the Java interface. In order to improve interoper-
ability with other tools, we also support the ISO/IEC 15909-2 transfer format
standardisation effort [7].

Our object model builds on version 1.1.5 of ISO/IEC 15909-2, in partic-
ular the PNML Core Model (Fig. 2 in [7]) and the High-Level Core Structure
(Fig. 8 in [7]). In addition, we have added some extensions for CPN Tools specific
features (to support CPN Tools’ concept of time and code segments for transi-
tions). In order to not pollute the basic model, we have basically implemented
the PNML Core Model, and added features from the High-Level Core Structure
and the CPN Tools specific extensions as add-ins. We have also extended the
PNML Core Model with a simplified version of Modular PNML [9] to support
hierarchical nets. The resulting object model can be seen in Fig. 5. Basically,
we have a PetriNet at the top left corner. A Petri net can contain one or more
Pages (middle left), which can contain any number of Arcs and Objects (mid-
dle). Objects are basically Places and Transitions (bottom). Additionally, objects
can be Instances, which basically correspond to substitution transitions in CPN
Tools. Objects can have any number of Labels (middle top), which are annota-
tions, that correspond to initial markings, place types, arc inscriptions, names,
guards (or conditions), code segments, and time inscriptions (middle from left
to right). Places, transitions, and arcs each have one or more add-ins (classes
with dark gray background), which basically allows them to have typed access to
their annotations. Annotations also have an add-in, which makes it possible to
store a structured version of the annotation as well as a plain text version. The
Annotations package with the light gray background at the top right is basically
an implementation of the High-Level Core Structure except that we have added
Time and Code annotations. The white classes outside of this package basically
implements the PNML Core Model. The Instance and ParameterAssignement are
simplified versions of ModlInstance and ParamAssign (renamed to remove abbre-
viations). The change is that where Modular PNML introduces a concept of
modules and import nodes, we just use the already defined concepts of page and
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Fig. 5: Object model for CP-nets in the Java interface

place (as we only allow place-bordered modules). Furthermore, our Instance class
is a Node and not just an object as CPN Tools allows arcs to and from substi-
tution transitions. Finally, the place and transition add-ins do not contain their
annotations (as they do in High-Level Core Structure), but just refer to them,
as objects already contain labels and the add-ins merely provide typed access to
these. We also have a few add-ins not shown in the figure. One adds an identifier
to pages, arcs, labels and objects, and another adds names to pages and objects.
Finally, we have an add-in for tool-specific information to Petri nets, objects,
and labels.

The actual implementation of the object model is done using the Eclipse
Modeling Framework (EMF) [5], which is a framework for implementing object
models. EMF can generate implementation code from Java interfaces or from
an UML diagram [13]. EMF is furthermore able to generate Java interfaces
and UML diagrams from the model as well. In our case, we have described the
model using Java interfaces, and the UML diagram in Fig. 5 is automatically
generated from the model. In addition to automatic implementation, EMF also
provides some nice features, such as automatic generation of XML marshaling



and unmarshaling as well as an adapter functionality which is an extension of an
observer architecture [6, Chap. 5]. This makes it possible to observe the object
model for changes which is useful for editors, and to attach adapters adding new
functionality to the classes.

CPN Tools Importer. Instances of the object model in Fig. 5 can be gen-
erated programmatically. It is of course desirable to create such models using a
graphical user interface instead. For this reason we have created an importer,
which allows programmers and users to import models created with CPN Tools.

The importer only imports the net-structure of the model but is prepared
to support the graphical information as well, as we have made a preliminary
implementation of the Graphical Information (Fig. 3 in [7]). All labels except
for HLDeclarations are loaded as flat text; HLDeclarations use a structure similar
to the TermsUserDeclarations (Fig. 17 in [7]), but the details are not shown
here.

4.2 Protocol Implementation

The CPN Tools GUI communicates with the simulator process using a custom
protocol. The protocol is an implementation of a remote procedure call (RPC)
system [3, Chap. 5.3]. The protocol sends packets over a TCP /IP stream. Packets
are transmitted in the custom BIS (boolean, integer, string) format, which is a
binary packet format that basically takes care of marshaling of simple data
types. Packets have an opcode which indicates the type of packet. CPN Tools
primarily uses two opcodes, namely 1 (evaluate SML code) and 9 (RPC request).
Packets with opcode 1 just contain a string to be sent for evaluation. Packets
with opcode 9 have an additional integer to indicate which command to execute
and sometimes another integer to determine a sub-command. Such commands
must be combined in the correct way to syntax check an entire CPN model and
generate simulator code for it.

In order to implement this protocol, one must implement the BIS packet
format as well as high-level constructs translating to the lower-level command
and sub-command integers, which is a tedious and error-prone job. Finally, we
need to construct a component that can take a CPN object model and correctly
send it to the simulator for syntax check and simulation. In Fig. 6 we see how
this has been implemented in the Java interface. We see five packages. cpn.model
represents the object model from Fig. 5, and cpn.model.importer is a package
implementing an importer able to load a file created using CPN Tools. The class
Job, which is outside of any of the packages, is part of Eclipse. The remaining
three packages implement the protocol used to communicate with the CPN sim-
ulator. The classes are listed with the most high-level at the left. Only the classes
at the top are meant to be used by most implementers. At the bottom-right, we
have Packet, which implements the BIS package format. Such packets can be sent
to a Simulator. The Simulator uses a delegate DaemonSimulator to communicate
with the simulator via TCP/IP in the same way as CPN Tools. The Simulator



class provides communication at the level of packets. The HighLevelSimulator
provides stubs for all the calls supported by the simulator, and it is thus possi-
ble to communicate with named methods. It uses a PacketGenerator factory to
actually create the packets it needs. The Checker class ties this to the object
model hierarchy, and makes it possible to perform higher-level operations, such
as syntax checking all declarations of a model. CheckerJob further lifts this and
makes it possible to syntax check an entire net using a single call. The checker
job integrates with the Eclipse platform and can provide feedback to the user.
If this is not desired, one can use the simpler Checker class, which can be used
independently of the platform used. For operations other than checking (such as
simulation), one must go to the HighLevelSimulator. One will very rarely need to
consider the Simulator, PacketGenerator, and their underlying classes.
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Fig. 6: Implementation of the protocol used to communicate with the simulator

5 Examples

In this section we show how to use the aforementioned interfaces by implementing
a simple state space exploration tool that can check a model for dead-locks
from the command-line. We first show the SML code implementing the traversal
algorithm using the SML interface from Sect. 3, and then turn to the Java code
for the command-line application loading a model and launching the exploration.

5.1 State-space Exploration

The implementation of the state space exploration algorithm can be seen in List-
ing 1.8. We actually implement an algorithm parametrised with a state property,
so it is possible to check for other properties than dead-locks. The algorithm ba-
sically performs a recursive depth-first traversal of the state space and stores



already expanded states in a hash-table. If a state not satisfying the property is
found an exception is raised. The code starts (1. 1) by defining an exception to
raise if a violating state is found. Then the built-in parametrised hash-function is
instantiated. Then follows the implementation of the actual algorithm (Il. 6-35),
which takes a predicate to apply to each state and a list of states from which to
start the exploration. The function first defines the storage using SML’s built-in
HashTable (Il. 8). Then two mutually recursive functions dfs’ and dfs" are defined.
dfs’ (11.20-31) traverses a list of states. It starts by checking if we have already
traversed the state (1. 22), and, if so, continues with the next state (1. 23). If the
state is new, it is stored (1. 25) and the predicate is checked (1. 26). If the predi-
cated is violated, the exception is raised (1. 29). Otherwise we call dfs” with the
state before continuing with the rest of the states. dfs” takes care of exploring
successors resulting from executing all enabled events for a given state. It basi-
cally calculates successor states for each event (1. 14), and explores them using
dfs’ (1. 15) before traversing the rest of the events (1. 17). The entire function
just calls dfs’ with the given state(s). If no exception is raised, we return that no

Listing 1.8: Implementation of a simple state space exploration algorithm.

1 | excepti on Violating of CPNToolsModel.state

w

fun combinator (h2, hl) = Word.<<(h1, Ow2) + hl + h2 + Owl7
val hash = CPNToolsHashFunction combinator

S

6 | fun dfs predicate states =

7 | let

8 fun equals (@, b) = a =>b

9 val storage = HashTable.mkTable (hash, equals) (1000, LibBase .NotFound)
11 fun dfs” state [ = ()

12 | dfs” state (event:events) =

13 | et

14 val successors = CPNToolsModel.nextStates (state, event)
15 val _ = dfs’ successors

16 in

17 dfs” state events

18 end

20 and dfs’ [] = ()

21 | dfs’ ((state, events)::rrest) =

22 i f Option.isSome (HashTable.find storage state)
23 then dfs’ rest

24 el se let

25 val _ = HashTable.insert storage (state, ())
26 val violates = predicate (state, events)
27 in

28 i f violates

29 then rai se Violating state

30 el se (dfs” state events; dfs’ rest)

31 end

32 |in

33 (dfs’ states; (NONE, storage))

34 handl e Violating state => (SOME state, storage)

35 | end

37 | fun none _ = false

38 | fun dead (_, events) = List.null events




state violating the property was found, and the storage (1. 33). If an exception
is raised, we also return the state violating the property. The last part of the
listing contains a predicate that is never satisfied (1. 37) and one that checks for
dead-locks (1. 38). The first is useful for performance testing, as it forces a full
generation.

We have tested this implementation against the one built into CPN Tools.
By varying the number of packets to transmit in the CPN model in Figs. 3 and
4 (altering the marking of the Send place) from two and upwards, we see that
this implementation is 50-290 times faster (for 4-19 packets), discovers the same
number of states as CPN Tools, and is able to explore larger state spaces than
CPN Tools (3.0 - 105 states when transmitting 25 packets compared to CPN
Tools” 1.7 - 108 states when transmitting 19 packets).

5.2 Command-line State-space Analyser

To keep the example short, we use a simple implementation strategy. We load
the model given as the first parameter, load the SML code shown in the previous
example, which we assume is stored in a file simple-dfs.sml. Finally, we perform
the exploration and show the result to the user. The implementation can be seen
in Listing 1.9. We start by importing some classes needed (11. 1-9). The rest of the
code is the class implementing our state space tool. The class starts by obtaining
the name of the file to analyse (1. 13). The file is loaded as a Petri net (1. 14),
and we create a HighLevelSimulator. As we are running this outside of an Eclipse
run-time environment, we need to supply a simulator manually. The simulator
requires a delegate, which requires information about which host and port to
connect to as well as the name of the run-time system to load. All of this takes
place in 1l. 16-18. If we are using the interface as part of an Eclipse application,
we can just use the simplified version in 1. 15, which obtains all parameters from
a preference pane exposed to the user. We then create a new CheckerJob (1. 20),
which requires a name (we just give it the name of the file), a Petri net, and
a high-level simulator. We start (schedule) the job and wait for it to terminate
(1. 21-22). We then load the state-space algorithm developed previously (1. 23),
and launch an exploration (1. 24-30). We process the result of the exploration
so the result we show the user is the violating state (if any) and the number
of nodes explored. When we are done, we destroy the simulator (1. 32). This
is needed as the simulator starts an external application, which should be shut
down as well as a couple of Java threads for communication. By destroying the
simulator we make sure to clean this up. If we quit the application (such as
pressing the cross in a graphical application), this is performed automatically,
but for this command-line application do this manually in order to terminate
the program when the exploration is done.

The command-line tool can be executed as java StateSpaceTool protocol.cpn,
and shows the first encountered dead-lock if there is one as well as the number
of states stored.



Listing 1.9: Implementation of a command-line state space exploration tool.

i nport java.io.File;

i mport java.net.InetAddress;

i mport java.net.URL;

i mpor t dk.au.daimi.ascoveco.cpn.engine.Simulator;

i mport dk.au.daimi.ascoveco.cpn.engine.daemon.DaemonSimula tor;

i mport dk.au.daimi.ascoveco.cpn.engine.highlevel.HighLevel Simulator;
i mpor t dk.au.daimi.ascoveco.cpn.engine.highlevel.checker.C heckerJob;
i mpor t dk.au.daimi.ascoveco.cpn.model.PetriNet;

i mpor t dk.au.daimi.ascoveco.cpn.model.importer.DOMParser;
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public cl ass StateSpaceTool {
public static voi dmain(String[] args) t hr ows Exception {
String file = args[0];
PetriNet petriNet = DOMParser.parse( new URL("file://" + file));
Hi ghLevel Si mul ator s = Hi ghLevel Si nul at or. get H ghLevel Si mul ator () ;
HighLevelSimulator s = HighLevelSimulator.getHighLevel Simulator(
new Simulator( new DaemonSimulator(
InetAddress.getLocalHost(), 23456, new File("cpn.ML")));

e e
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-

try {
CheckerJob checkerJob = new CheckerJob(file, petriNet, s);

checkerJob.schedule();
checkerJob.join();
s.evaluate("use \"simple-dfs.smi\"");
System.out.printin(s.evaluate(
"let "+
" val (state, storage) = " +
" dfs dead (CPNToolsModel.getlnitialStates()) " +
“in "+
(state, HashTable.numitems storage) " +
"end"));
finally {
s.destroy();
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6 Conclusion and Future Work

In this paper we have described two interfaces to the CPN Tools simulator. One
is very close to the simulator and written in Standard ML, and provides fast
access to the simulator. The interface is useful for analysis methods and other
algorithmic applications requiring little user-interaction. The other interface is
written in Java and provides an object-oriented representation of CPN models,
a means to import models created using CPN Tools, and high-level abstrac-
tions of the communication with the CPN Tools simulator, making it possible to
integrate CPN simulation into Java applications, ranging from simple command-
line applications to full-fledged graphical applications. Both of the interfaces are
available to interested parties. Send an email to ascoveco@cs.au.dk  for more
information.

Future work includes replacing the current event implementation with the
indicated hierarchical implementation from Listing 1.5. We can alleviate the syn-
tactical problems by observing that while names of transitions may overlap, they
rarely do in practise, so by just opening all structures, we can refer to the tran-
sition Receive Acknow. on the Sender page as Top Sender Receive _Acknow
{k, n1, n2 }. For transitions with overlapping names, we still need to use the



very verbose naming, but we find that this is a reasonable price to pay for the
more convenient representation.

The current Java interface only supports loading CPN models and syntax-

checking them in one action. It would be useful to integrate the incremental
syntax-checking capabilities of the simulator with the adapter functionality of
the object model, so that whenever the object model is altered, it is automatically
syntax-checked, independently of how the model is altered. This would be useful
for editors, but also for applications generating models, as they are automatically
checked for correctness and ready to be simulated.
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