
Looking Good, Behaving Well
Behavioural Verification and Visualisation
of Formal Models of Concurrent Systems

Michael Westergaard

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Looking Good, Behaving Well

Behavioural Verification and Visualisation

of Formal Models of Concurrent Systems

A Dissertation

Presented to the Faculty of Science

of the University of Aarhus

in Partial Fulfilment of the Requirements for the

PhD Degree

by

Michael Westergaard

July 24, 2007

Abstract

Computer systems are so complex and crucial to our lives that we need to ver-

ify that they are correct and do not fail or risk facing enormous economical

consequences, like in the case of the European Space Agency’s Ariane 5 rocket,

which self-destructed 37 seconds after launch because of a software malfunc-

tion, or loss of human lives, like the Therac-25 radiation therapy machine,

which caused at least six deaths due to overdoses of radiation because the ma-

chine was not able to detect a human error. We would like to reduce the number

of such errors or even prove their absence.

Many errors stem from incomplete and inconsistent specifications of the

systems to construct, as they are often written in natural language text. We

would instead like to create a formal specification. In order to do that, we

create a formal model of the system we wish to construct, much like how an

architect creates a blueprint of a house that is to be constructed.

A specification, in the form of a formal model, can then be verified using

formal analysis methods. One such method is the reachability graph method,

which basically explores all possible executions of the formal model by creating

a graph where each node is a state of the formal model and each edge indicates

that it is possible to go from the source to the destination state. Such a graph is

called a reachability graph. The reachability graph method has the advantage

that is can be implemented in a computer and made almost completely auto-

matic. Unfortunately, the behaviour of a formal model can be very complex, so

we will often need a reduction technique, which tries to explore only part of the

behaviour or represent the behaviour more efficiently in the computer memory.

This thesis presents two such reduction techniques. One reduction technique,

the sweep-line method, uses a user-specified notion of progress to remove states

that will never be encountered again from memory. This method has the disad-

vantage that the structure of the reachability graph is not preserved, so certain

properties cannot be verified. In order to overcome that, we have extended the

sweep-line method to also store the structure of the reachability graph in a

memory-wise nearly-optimal manner. Another method, the ComBack method,

avoids storing the states of the reachability graph altogether, by exploiting that

any state can be reconstructed if we know how to get to it from the initial state.

By storing a spanning tree of the reachability graph, rooted in the initial state,

the ComBack method manages to represent the reachability graph very effi-

ciently.

While a specification written as a formal model makes it possible to verify

desired properties, it is often difficult or even impossible for domain experts,

who know about the system we wish to construct, to validate that the formal

model indeed corresponds to the desired system. In order to facilitate commu-

nication of the formal model, we create a visualisation of the behaviour of the

formal model. The behaviour of the visualisation is completely defined by the

formal model, and the visualisation makes it possible to provide input to the

formal model. This thesis presents three papers on this topic. One presents

v

a tool, the BRITNeY Suite, which makes it possible to create visualisations of

formal models. Another paper describes an industrial case study where formal

models and visualisations have been used to create a prototype of a network

protocol facilitating communication between computers moving from one wire-

less network to another. The third paper provides a formal game-theoretic

framework for tying visualisations to formal models.

This thesis deals with making formal models look good and behave well.

By creating a domain specific visualisation, we can make the model look good,

and allow domain experts to understand them. By verifying the model using

the reachability graph method, we can make the model behave well, by remov-

ing errors in the model, making the model better suited as specification. This

thesis consists of two parts. Part I gives an overview of formal models, their

analysis, and visualisation of them. Additionally, Part I describes the five pa-

pers, which are re-printed in Part II. Four of these papers have been published

at conferences and one is submitted to a workshop.

vi

Acknowledgements

I would like to thank current and former members the CPN group at the Uni-

versity of Aarhus. I would like to thank Lars Kristensen and Kurt Jensen, my

supervisors, and gravity for pulling me in the right direction during my PhD

studies. Thanks to Kim G. Larsen for an inspiring stay in Aalborg. I would

like to thank Thomas Mailund, Kristian B. Lassen, my other co-authors, and

Søren Christensen for fruitful discussions and cooperation. Thanks to my girl-

friend, Lea Pedersen, for support under the difficult times of writing this the-

sis. I would like to thank my fellow students and friends for being there when I

needed them and my mortal enemies for not. A big thank you to Fredagscaféen,

Universitetsbaren, Cockney Pub, TÅGEKAMMERET, and Fysisk Fredagsbar

for support during beverage-critical times, and to Brygshoppen for selling fine

Belgian beers. I would like to thank the Moon for being in just the right place

to not screw up the tides and the Sun for not being bright enough to shine

through the roof and making flares on my computer screen. Also, a big thank

you to everybody I forgot, except for those I do not want to thank. To move from

the latter to the first group buy me a beer. Finally, a big thank you to you, my

reader, for bearing with me for the next 171 pages.

Michael Westergaard,

Århus, July 24, 2007.

vii

Contents

Abstract v

Acknowledgements vii

I Overview 1

1 Introduction 3

1.1 Approaches to Software Validation 4

1.2 Behavioural Models of Concurrent Systems 7

1.3 Verification of Formal Models . 10

1.3.1 Static Analysis . 10

1.3.2 Dynamic Analysis . 13

1.4 Behavioural Visualisation of Formal Models 15

1.4.1 The Model-View-Controller Design Pattern 16

1.4.2 Visualisation Using the MVC Design Pattern 18

1.5 Relationship between Formal Model and Implementation 19

1.6 Reading Guide . 22

1.6.1 Brief Summary of Papers 22

2 Behavioural Verification by Means of Reachability Graphs 25

2.1 Basic Reachability Graph Analysis 25

2.2 Reduction Techniques . 28

2.2.1 The Sweep-Line Method . 31

2.2.2 Hash Compaction . 33

2.3 Memory-Efficient Reachability Graph Representations 34

2.4 The ComBack Method—Extending Hash Compaction 37

2.5 Contribution and Future Work . 39

2.5.1 Future Work . 40

3 Behavioural Visualisation of Formal Models 45

3.1 Approaches to Visualisation . 47

3.2 The BRITNeY Suite Animation Tool 49

3.3 Model-based Prototyping of an Interoperability Protocol 52

3.4 A Game-theoretic Approach to Behavioural Visualisation 55

3.5 Contributions and Future Work . 59

3.5.1 Applications by the Author of this Thesis 60

3.5.2 Applications by other Research Groups 61

3.5.3 Future Work . 64

ix

4 Summary 69

4.1 Contributions . 69

4.2 Applications . 71

4.3 Future Work . 72

II Papers 75

5 Memory-Efficient Reachability Graph Representations 77

5.1 Introduction . 79

5.2 Petri Nets and Reachability Graphs 80

5.3 Condensed Graph Representation 81

5.3.1 Representing the Reachability Graph 82

5.3.2 Exploring the Condensed Reachability Graph 82

5.4 Creating the Condensed Representation On-the-fly 83

5.5 Reducing Peak Memory Usage . 84

5.5.1 The Sweep-Line Method . 84

5.5.2 An Unfolding of the Reachability Graphs 85

5.6 Experimental Results . 86

5.7 Conclusion . 89

6 The ComBack Method – Extending Hash Compaction 91

6.1 Introduction . 93

6.2 Background . 94

6.3 The ComBack Method . 96

6.4 The ComBack Algorithm . 99

6.4.1 Space Usage. 100

6.4.2 Time Analysis. 101

6.5 Variants and Extensions . 103

6.6 Experimental Results . 105

6.7 Conclusions and Future Work . 109

7 The BRITNeY Suite Animation Tool 111

7.1 Introduction . 113

7.2 Architectural Overview . 114

7.3 Using BRITNeY to Generate Message Sequence Charts 115

7.3.1 Model . 116

7.3.2 Adding the MSC primitives in CPN Tools 116

7.4 Visualization Examples . 117

7.5 Related Work and Future Improvements 119

8 Model-based Prototyping of an Interoperability Protocol 121

8.1 Introduction . 123

8.2 The Interoperability Protocol . 125

8.3 Model-based Prototyping Methodology 126

8.4 The CPN Model . 127

8.4.1 Model Overview . 128

8.4.2 Modelling the Core Network 129

8.4.3 Modelling the Gateways . 133

8.4.4 Modelling the Mobile Ad-hoc Network 134

8.5 The Animation Graphical User Interface 136

8.6 Conclusions . 138

x

9 A Game-theoretic Approach to Behavioural Visualisation 141

9.1 Introduction . 143

9.2 Related work . 145

9.3 Theoretical background . 146

9.4 Visualisations as game transition systems 149

9.4.1 Tool support . 152

9.5 Use of visualisations . 154

9.5.1 Industrial Case: Routing in Mobile Ad-hoc Networks . . . 154

9.5.2 Visualising winning strategies 156

9.6 Conclusion and future work . 156

Index 159

Bibliography 161

xi

Part I

Overview

1

Chapter 1

Introduction

Modern computer systems are very important to our lives. Use spans from

space shuttles and robots investigating foreign planets over critical hospital

systems, power-plant control and computer systems controlling aeroplanes and

cars, to home banking, e-mail, and word processing.

Some of the systems using computers can be considered highly critical, ei-

ther because they are very expensive to produce, such as robots investigating

foreign planets, or because human lives depend on them, such as computers

controlling aeroplanes and cars, and systems in hospitals and power-plants.

These systems need to be correct, because their failure can cause loss of hu-

man lives or enormous economical losses. Faulty computer software has been

the cause of numerous disasters [81]. Disasters range from killing at least six

people due to radiation overdoses because the Therac-25 radiation therapy ma-

chine [109] was unable to detect a human error and issue a warning, over eco-

nomical losses, including the Ariane 5 lifting rocket [39], which self-destructed

because a 64 bit floating point value was erroneously converted to a 16 bit inte-

ger and the error handler, which was supposed to take care of errors when too

large values were converted, had been disabled for efficiency reasons, causing

the computer to crash. The Mars Climate Orbiter [48] crashed while trying to

land due to a mix-up between metric and U.S. customary units, causing the loss

of the robot. NASA satellite software designed to measure holes in the ozone

layer [129] ignored values deviating from the expected values caused a hole in

the ozone layer to be ignored for eight years. These examples illustrate how

errors in computer software can lead to vast economical losses, environmental

disasters, and loss of human lives, so for critical software it is worth the effort

to ensure that the software has no errors.

The goal of this work is to contribute to the design and improvement of

methods for avoiding such catastrophic computer malfunctions. This is done by

constructing a formal model of the system we wish to construct, validate that

the formal model corresponds to the intended system using a domain-specific

visualisation, and formally verify that the formal model satisfies properties re-

quired of the system, e.g., that it is impossible for a human error to cause the

death of other humans. Correctness depends on the computers themselves, the

hardware, and the programs they run, the software. Both are equally impor-

tant and need to be correct in order for the entire system to be correct. In this

thesis we focus on the correctness of the software, not because the hardware is

deemed less important, but because we assume that somebody else takes care

of the correctness of hardware.

In the rest of this chapter, we first describe what we consider formal models

of computer systems. We then turn to describing how to verify the behaviour

3

4 Chapter 1. Introduction

of formal models and how to visualise that behaviour. After that we provide

directions for arriving at a correct implementation from the formal model, and

we end this chapter by providing a guide to the rest of this thesis.

1.1 Approaches to Software Validation

One classical approach to program correctness is to annotate them with for-

mal expressions, e.g., using Hoare logic [70], from which we can derive desired

correctness properties. We must manually or semi-automatically prove that

the program indeed satisfies these annotations. This approach has a number

of disadvantages. Firstly, the approach requires that humans manually find

the correct annotations and prove their correctness. This is a lot of manual

work, which is very difficult for large systems. Secondly, the approach requires

that whenever a change is made to the system, some expressions must be re-

evaluated and re-proven, which makes changes expensive.

Given the limitation of classical approaches to correctness, we instead con-

sider an approach based on construction of models. To illustrate this, we con-

sider a parallel in the physical world, namely building a house. When a cus-

tomer wants a new house, but is unable to build it himself, he hires some con-

tractors to do it for him. The customer here corresponds to the customer who

wants a computer program, and the contractors correspond to software com-

panies or programmers. The customer can send requirements (such as size,

number, and placement of rooms) to the contractors, who then build the house

according to their interpretation of these requirements. The requirements from

the customer have a direct counterpart in the computer software, where we call

such requirements a requirements specification or just specification for short.

The specification may be more or less precise and state what is required of the

computer program. This is illustrated in Fig. 1.1(a). Here we see the customer

(upper left corner) write a specification (lower left corner), which is then inter-

preted by the contractor (middle), who builds a house, (right), based on his in-

terpretation of the specification. As we can see, the specification is ambiguous

(what is “red” and how should the 180m2 be distributed?) and incomplete (what

should the roof look like?), which leads to multiple possible implementations.

If the construction of the building has been outsourced to multiple contractors,

they would probably interpret the specification in different ways, which could

lead to houses that could not even be assembled in the end (e.g., the roof of the

interpretation (I) is too small for (II)). The same problems arise when dealing

with software. Ambiguities lead to software that does not do what the customer

intended and different interpretations by different software companies or pro-

grammers lead to components that cannot inter-operate. In Fig. 1.1(b), we see

that the customer thinks of a protocol which allows two computers to communi-

cate in both directions over a wireless link, but the specification is ambiguous

(what is “nodes”) and incomplete (it does not state that communication should

be bi-directional and over a wireless link), so the programmer, corresponding

to the contractor in the house example, may implement the protocol under the

assumption that two stationary computers communicate over a wired link (I)

or as a media-server communicating uni-directionally with a computer over a

satellite link (II).

In the real world, a contractor would not work directly from the specifica-

tion provided by the customer. Instead, an architect would try to interpret the

requirements from the customer and create a precise and complete represen-

tation in the form of blueprints. This situation is depicted in Fig. 1.2. Now

the contractor is certain of how the house should be constructed, and multi-

1.1. Approaches to Software Validation 5

House:

- red

- 180 m2

Customer

Specification

?

Contractor

Implementation I

Implementation II

(a)

Network

protocol:

- handle

loss

- 2 nodes

Customer

Specification

?

Programmer

Implementation I

Implementation II

(b)

Figure 1.1: Construction directly from the specification.

House:

- red

- 180 m2

Customer

Specification

Architect

♫
brick red

Blueprint

Contractor

Implementation

(a)

Network

protocol:

- handle

loss

- 2 nodes

Customer

Specification

Formal methods
expert

♫
Formal model

Programmer

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

Implementation

(b)

Figure 1.2: Construction using a formal model.

ple contractors can be hired to make the different parts of the house with-

out problems. This approach is better than the previous one, as we have ob-

tained a precise and complete description of the house we want to construct.

We can use this approach for software construction as well. Here we call the

blueprints a formal model of the program. We require that the formal model

is constructed in a formal language with a formal semantics, such as coloured

Petri nets [91], state charts [65], message sequence charts [67] (a variant of

which is known as UML [131] sequence diagrams), Petri nets [138], CCS [123],

PROMELA [77,154], ambient calculus [17], or π-calculus [124]. We will not al-

low a formal model to be specified as a natural language specification or using

semi-formal notations such as UML [131]. The formal model is constructed by

a formal methods expert.

While the method in Fig. 1.2 ensures that we get a precise and complete

formal description of what to construct, it does not ensure that the formal

model corresponds to the customer’s intentions. We can see in Fig. 1.2 that

the house/network protocol the customer is thinking of is different from the

one constructed by the contractor/programmer. This is because the original

natural-language specification was not accurate or because the architect mis-

understood it. We would therefore like the customer to validate that the formal

description (the blueprints or the formal model) of the system corresponds to

his intentions. Alas, the customer may not understand the blueprints or formal

model. This may be stretching the parallel a little, as most people have some

understanding of how to read blueprints, but it may not be easy to understand

how the living room will look in afternoon sunlight from a set of blueprints.

In any case, the customer is seldom able to read a formal model of a software

6 Chapter 1. Introduction

House:

- red

- 180 m2

Customer

Specification

Architect

brick red

Blueprint

Architect

Visualisation

(a)

����� ��
proto

- handle

loss

- 2 nodes

C

Spe
��	
��

Formal methods
expert

Formal methods
expert

Visualisation

Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

(b)

Figure 1.3: Using visualisation to ensure the formal model corresponds to the

customers intentions.

system, and this is the scenario we are really interested in.

To make the customer understand the model of the system, we assume that

the architect/formal methods expert or somebody else, who understands the

formal model, creates a visualisation of the model. In the house example, a

three dimensional physical model of the house may be constructed. It is placed

in a physical model of the surroundings, which allows the customer to look at

the model and see if it fits with his ideas. He may even experiment with it, e.g.,

by moving a lamp around it simulating how the sun looks at different times of

the day. This visualisation may cause the customer to improve the specifica-

tion by making requirements more precise and by specifying things missing in

the original specification. In the physical world, the blueprints would then be

updated and a new visualisation would be created. This is shown in Fig. 1.3(a).

In the software world, we would create a visualisation of the software we are

about to write, corresponding, e.g., to a prototype [44], and let the user ex-

periment with the prototype, thereby improving the specification. Often the

prototype runs as a computer program, as shown in Fig. 1.3(b).

By the method in Fig. 1.3, we can construct a complete formal model of

the system we want to construct. The idea is to use this formal specification to

check properties of the system we want to eventually construct. In the physical

world we may want to check that the house abides by the legislation (e.g. it

may be illegal to construct red houses in a certain neighbourhood), and that

it is physically possible to construct the house (e.g. that the roof is not too

heavy). This can be done as outlined in Fig. 1.4. Here we assume a blueprint

or a formal model—which may or may not correspond to some real system—

and some requirements. In the physical world an engineer would look at the

requirements and the blueprints together, and either arrive at the conclusion

that the blueprints satisfies the requirements, or find some errors, which are

then fixed in the blueprints, e.g., by requiring that the walls of the house is

made of more solid material. In the software world, we assume that the formal

model and the requirements are on some form we can use as input to a verifier.

The verifier can give two answers, either the requirements hold or they do

not. If the requirements hold, we are satisfied with an “Ok” from the verifier,

whereas we would like an error report if the requirements are not satisfied

by the model. We can use this error report as input for further refinement

of the model and the requirements. Sometimes the error is really an error in

the model, either because we have incorrectly modelled the requirements (for

1.2. Behavioural Models of Concurrent Systems 7

brick red

Blueprint

Roof not

too heavy

No red

buildings

Requirements

Engineer

Yes

Ok
No

Color is red

Roof is 5,

house can

carry 3

Error report

Refine

(a)

Packets

are not lost

Deadlock-

free

Requirements

Verifier

Yes

Ok
No

If wire is cut,

packets are

lost

Error report

Refine

Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

(b)

Figure 1.4: Verification of formal models.

example if the requirements specifies sufficiently strong walls but the model

incorrectly specifies the strength as too low) or because the requirements are

incorrect (for example if the requirements specify that walls should be too thin,

so they are not able to carry the roof). In that case, we need to change the model

and/or the requirements. Sometimes the error is an erroneous requirement,

e.g., a too strict requirement (for example houses may be allowed to be red,

just not crimson). Whenever we fix an error in the formal model, we also fix

an error in the product, assuming that the product is constructed exactly as

described by the formal model.

1.2 Behavioural Models of Concurrent Systems

Until now, we have talked about formal models of computer systems without

defining what we mean by that. In the physical world a model of the product,

e.g., a house, is an abstract representation of the product, and we want a for-

mal model of a computer system to also be an abstract representation of the

product, i.e., the implementation. The advantage of a more abstract represen-

tation is manifold. Firstly, it is often cheaper to construct an abstract model,

as we do not have to deal with a lot of details, just like it is easier to draw a

straight line and say it represents a wall of concrete than actually building the

wall. Secondly, a more abstract representation usually has simpler behaviour,

which makes analysis tractable for more complex systems.

In the rest of this thesis we solely focus on models of the behaviour of con-

current systems [138], i.e., systems where computation is performed in multi-

ple components or threads. Examples span from multi-threaded applications

running on a single computer, such as a word processor which is able to con-

tinue working while sending a document to the printer, to complex distributed

algorithms, such as network protocols which requires the cooperation between

multiple computers connected via a network to provide a service, such as trans-

mitting packets safely over a faulty network. We consider concurrent systems

rather than single-threaded programs as the behaviour of concurrent systems

is much more complex. Correct behaviour of single-threaded systems can usu-

ally be verified using, e.g., unit-testing [5], whereas concurrent systems not

only depend on the input to the program, but also on the timing of each com-

ponent relative to the other components, which makes is difficult to write tests

that, in a reproducible way, exercise all possible interleavings of the compo-

nents in question.

8 Chapter 1. Introduction

So, what is an abstract representation of a concurrent system? Suppose

we are to create a network protocol for transmitting packets over an unreli-

able network. If we were to actually implement the protocol, we would need

to worry about receiving actual data from the network, which is operating

system-specific, we would need to decode binary data in order to put it into a

form where we can process it, and we would need to set up equipment to actu-

ally test our implementation. These implementation details and many others

like them make the implementation complex and may hide the real application

logic. A model of a network protocol may disregard all of these implementation

details, and can therefore focus on what we are actually interested in, namely

the behaviour of the protocol. A real prototype or implementation would also

suffer from the fact that some actions happen very rarely in reality, but when

they happen the correctness of the system can be affected. As an example,

packet losses happen rarely in real settings, but depending at which point they

happen during the execution of a network protocol, they can have catastrophic

consequences. A model of the system can be controlled, and we can intention-

ally drive the model into rarely occurring situations to observe the behaviour

of the system in such situations.

To describe our models, we need a modelling language. Most of the work

described in this thesis has been developed in the context of coloured Petri

nets [91], but is independent of the formalism, and could have been created us-

ing many other formal modelling languages. A coloured Petri net is a labelled

directed bipartite graph. In Fig. 1.5(a) we see a simple model of a network

protocol, created in CPN Tools [C1,33], a tool for modelling with coloured Petri

nets. The model is the same as the one used in [T3] (except for typograph-

ical changes), which is a simplified version of a network protocol introduced

in [91]. The nodes of a coloured Petri net are called places and transitions,

and are drawn as ellipses and rectangles, respectively. The model in Fig. 1.5(a)

has six places, Out Buffer, Send ID, Network 1, In Buffer, Receive ID, and Net-
work 2, and four transitions, Send Data, Drop, Receive Data, and Receive Ack.

Places have an associated type and can contain a multi-set of tokens of that

type. For example, in Fig. 1.5(a), the place Out Buffer has type PACKET and

contains two tokens. The number of tokens is written inside the circle next to

the place and the values of the tokens are written inside the rectangle nearby.

On the place Out Buffer, each token is a pair of a packet sequence number and

the packet contents (i.e., of type PACKET). We see that a packet numbered 1
containing ”Formal” is scheduled to be transmitted as is packet number 2 with

data ” model”. A transition is enabled if there exist an assignment of values to

all variables around it so that all the tokens required by arc expressions, with

the proper values inserted, are available on input places (places connected to

a transition via an arc from the place to the transition). As an example, pack-

ets are transmitted by the Send Data. This transition is enabled in Fig. 1.5(a)

if we assign the value 1 to id and ”Formal” to data. We write Send Data{id =
1, data = ”Formal”} to represent the transition Send Data with this binding of

its variables. In Fig. 1.5(a) we have indicated that Send Data{id = 1, data =
”Formal”} is enabled by a green highlighting of the transition Send Data. If a

transition is enabled it can be executed and the result is that tokens are re-

moved from input places according to the arc expressions and new tokens are

produced on output places (places connected to the transition via an arc from

the transition to the place) according to the arc expressions. A double arc is

just an abbreviation for an arc in each direction with the same expression. The

result of executing Send Data{id = 1, data=”Formal”} in Fig. 1.5(a) is shown in

Fig. 1.5(b). Here a new packet is produced on the place Network 1, correspond-

ing to transmitting a packet onto the network. The packet is not removed from

1.2. Behavioural Models of Concurrent Systems 9

packets

packets^^
[(id, data)]

id

idid+1

id+1

id

(id, data)

(id, data)

Receive
Ack

Receive
Data

Send
Data

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

1

ID

Network 1

PACKET

1`(1, "Formal")++
1`(2, " model")

Out
Buffer

PACKET

(id, "")

(id, data)

In
Buffer

Receive
ID

Drop

(id, data)

(id, data)

1 1`1

2

1`(1,"Formal")++
1`(2," model")

1

1`[]
1 1`1

(a) Before executing Send Data{id = 1, data = ”Formal”}.

packets

packets^^
[(id, data)]

id

idid+1

id+1

id

(id, data)

(id, data)

Receive
Ack

Receive
Data

Send
Data

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

1

ID

Network 1

PACKET

1`(1, "Formal")++
1`(2, " model")

Out
Buffer

PACKET

(id, "")

(id, data)

In
Buffer

Receive
ID

Drop

(id, data)

(id, data)

1 1`1

1 1`(1,"Formal")

2

1`(1,"Formal")++
1`(2," model")

1

1`[]
1 1`1

(b) After executing Send Data{id = 1, data = ”Formal”}.

Figure 1.5: A formal model of a simple protocol able to transmit packets over a

network which may drop packets.

the Out Buffer, so it can later be retransmitted if needed. The newly produced

packet can be dropped (Drop{id = 1, data = ”Formal”}) or successfully received

(Receive Data{id = 1, data = ”Formal”, packets = []}). When packets are received,

the counter on Receive ID is incremented by one, the packet is saved in the In
Buffer, and an acknowledgement is sent back to the sender, so it knows that the

packet is successfully transmitted. Receive Ack receives such an acknowledge-

ment, increments the counter in Send ID, so the sender can start transmitting

the next packet. We see that this models a simple network protocol, which is

able to transmit packets over a network that may drop packets. The details

of how the network works have been abstracted away and packets are repre-

sented in an abstract way, so we do not have to perform complex translations

of binary data, which would hide the application logic.

10 Chapter 1. Introduction

1.3 Verification of Formal Models

Now we focus on the verifier in Fig. 1.4. Considering the house example, the

verifier would be an engineer using techniques based on the laws of physics to

verify properties of the house. Naturally, we would like a way to do that in the

software world as well.

In order to verify whether a formal model satisfies one or more properties,

we use an analysis method. Basically, analysis methods fall into two categories:

static analysis and dynamic analysis. Static analysis only looks at the descrip-

tion of the model whereas dynamic analysis also looks at the behaviour of the

model. In the case of analysis of the network protocol described in the previ-

ous section, static analysis would only look at the model in Fig. 1.5, whereas

dynamic analysis would also look at the behaviour of the model. In this Sect.

we will first look at static analysis and then turn to dynamic analysis.

1.3.1 Static Analysis

Static analysis is well-known from compilers. Compilers perform static anal-

ysis to generate more efficient programs and to check for errors that may oc-

cur in programs. Static analysis is performed when the program is compiles,

whereas dynamic analysis as described in the next section is performed on

run-time. As an example, the Java language specification [62] cites that local

variables should be definitely assigned1 a value before they are used [62, Chap.

16]. In both methods in Fig. 1.6, we are interested in checking whether the

variable y is definitely assigned a value before it is read. The variable is as-

signed a value in lines 4 and 11 and read in lines 5 and 12. The only difference

between the two problems is that the assignment in line 10 is dependent on

the evaluation of the boolean expression x == x. Thus, the method definitelyAs-
signed from Fig. 1.6 is allowed whereas subtlyAssigned is not, even though the

condition of the if statement in line 10 would always be true. The property

we actually want to check is that all variables have been assigned before they

are read, but it is impossible to check this property, so we instead check the

simpler property that all variables must definitely be assigned, thereby dis-

carding subtlyAssigned even though it actually satisfies the desired property.

Rice’s theorem [146] states that any non-trivial property of the behaviour of

programs cannot be checked automatically. Here trivial properties are proper-

ties that either hold for all programs or for no programs at all. Due to this prop-

erty we have to translate properties stating something about the behaviour of

programs into stronger properties stating something about the program. This

is the strongest caveat of static analysis, as it is not always possible to find a

stronger requirement that does not discard important programs.

Hoare logic [70] is a classical technique for more advanced static analy-

sis. The idea of Hoare logic is to annotate each statement of a program with

pre- and post-conditions. Pre-conditions of one statement must follow logically

from the post-condition of the previous statement. Proof rules for each kind

of statement makes is possible to prove post-conditions from pre-conditions.

Hoare logic makes it possible to state and prove properties, such as correct-

ness of algorithms. The main difficulty of using Hoare logic is that sufficiently

strong pre-conditions must be chosen manually in order to prove the desired

post-conditions.

1The specification of course defines this more precisely. The gist of the definition is that on all

traces, i.e., where both the then and else cases of an if-statement are considered, all variables must
be assigned before they are read.

1.3. Verification of Formal Models 11

1 public class Assignments {
2 public int definitelyAssigned(int x) {
3 int y;
4 y = x * 2;
5 return y;
6 }
7

8 public int subtlyAssigned(int x) {
9 int y;

10 if (x == x)
11 y = x * 2;
12 return y;
13 }
14 }

Figure 1.6: Two Java methods. One is accepted by the compiler while the other

is not. Neither contain any errors.

While Hoare logic requires ingenuity to come up with the correct pre- and

post-conditions, a simpler variant, namely types, have become so common most

programmers use them without ever really thinking about them. Types of vari-

ables are statements that the values assigned to a variable always belong to a

certain type. Consider again the methods in Fig. 1.6. How do we know that the

statement y = x * 2 always makes sense? What if x contains the string value

”horse”? ”horse” * 2 certainly makes no sense. We know that the statement

always make sense, because we have declared that the parameter x must be of

type int, i.e., that it must always contain integers. Thus, whenever we use x,

we know that we use an integer, so x * 2 is always successful, as multiplication

is defined on integers. In addition to requiring properties of our parameter, we

also promise that we always return an integer from both methods. We know

that this is true, because the only value returned from either method is y (lines

5 and 12), and we have declared that y is of type integer, which this is checked

whenever we assign values to y, such as in y = x * 2. The type system also

prevents us from making errors like calling definitelyAssigned(”horse”). In Java

we must explicitly state the types of variables, but it is also possible to make

a strongly typed programming language even without this requirement, such

as Standard ML (SML) [159] or OCaml [108]. Instead of requiring the user

to explicitly state the types of all variables, they can be automatically inferred

from how the variables are used and consistency of the use is checked.

Type systems can also be used to check properties of certain modelling lan-

guages, e.g., the ambient calculus [17]. The ambient calculus consists of am-

bients, which are located inside each other. Ambients can move in and out

of each other, dissolve neighbour ambients, and communicate with neighbour

ambients. A problem of the ambient calculus is that it is possible to send both

ambients and operations over channels. This means that we may arrive at a

situation where we receive an ambient on a channel and try to execute it, as-

suming it is a operation, or we receive an operation and try to move inside it.

Such nonsense uses of channels can be avoided if we are careful, but we can

also devise a type system which checks that do not make such errors. In [15]

Cardelli et al. devise three type systems for the ambient calculus, among those,

one which checks that nonsense use of data received over channels does not

happen. Another type system from [15] checks whether it is possible for am-

12 Chapter 1. Introduction

bients with a certain name to dissolve ambients with another name (which

can be bad if, e.g., it is possible to send two packets to a remote computer and

one packet contains code which is able to open the other packet to unveil a

virus). The full result of [15] is a type system, which, in addition to checking he

aforementioned two properties, also checks whether ambients with a certain

name are able to enter ambients with another name, which can, e.g., be used

to check the effectiveness of firewalls (if malicious code is able to enter through

the firewall it is not effective). Ambients need not be explicitly typed, much

like how values do not need to be typed in SML, but any process that can be

correctly typed exhibit the desired behaviour at run-time. Type systems need

to be developed and proved correct for each kind of property we would like to

check, and are therefore not that applicable for proving arbitrary properties,

but useful for guaranteeing absence of a certain kind of errors. Furthermore,

type systems are useful when translating from one formalism to another using

a translation inductive in the structure of the source formalism. By explicitly

assigning types to the result of the translation, we can inductively prove ab-

sence of a certain kind of errors (the kind guaranteed by the type system) in all

translated models.

Type systems are a special case of invariants. Invariants are properties that

must always hold during the entire execution of a program or formal model.

Type systems are invariants stating that a given variable always contains a

value from a given set or that something sent over a given channel is always

a channel, and Hoare logic uses invariants in loops. Of particular interest

are invariants that can proven solely by looking at the program or the for-

mal model. Coloured Petri nets also allow the specification of invariants—in

fact two dual kinds of invariants: transition invariants and place invariants.

Transition invariants state that the effect of executing a certain multi-set of

transitions (provided there are enough tokens initially) is the same as execut-

ing no transitions at all. In Fig. 1.5(a) the effect of executing the transition

Send Data{id = 1, data = ”Formal”} is adding one token to Network 1 and the

effect of Drop{id = 1, data = ”Formal”} is the exact opposite. Thus we have a

transition invariant 1‘Send Data{id = 1, data = ”Formal”} ++ 1‘Drop{id = 1, data
= ”Formal”} (using the multi-set notation of CPN Tools). A place invariant is

a set of weight-functions, which, when applied to the tokens available on all

places, always yields the same value. In Fig. 1.5(a), if we map any integer to

1‘0 on Send ID and Receive ID and all multi-sets of tokens on other places into

the empty multi-set, we get an invariant, as this always yields 2‘0. The weight

functions should be linear in the number of tokens, and can map into any do-

main desired. Invariants of CP-nets are not really that useful for analysis,

as they must be interpreted manually depending on the model. Furthermore,

calculating invariants requires calculation of inverse functions of the functions

appearing in the arc-expressions, which is not possible for CP-nets as the func-

tions appearing in the arc-expressions can be arbitrary, making the calculation

of invariants uncomputable. Work on automatically checking invariants for

CP-nets has been implemented and shown to work on a small set of exam-

ples by Toksvig in [158]. Invariants are more interesting for a simpler kind

of Petri nets, namely Place-transition Petri nets (PT-nets) [36]. PT-nets can be

considered as a simplified version of coloured Petri nets, but actually predates

coloured Petri nets. PT-nets are like coloured Petri nets except that all tokens

are equal—the type of all places must be UNIT = {•} (written () for technical

reasons) and all arc expressions must be integers, signifying how many tokens

are moved from each place. A PT-net version of the network protocol from

Fig. 1.5 is shown in Fig. 1.7. The protocol in Fig. 1.7 is only able to transmit

a single packet, but otherwise behave like the coloured Petri net version. All

1.3. Verification of Formal Models 13

1`()

1`()

1`()

1`()

1`()

Receive
Ack

Receive
Data

Send
Data

UNIT

Send
ID

()

UNIT

Network 2

UNIT

()

UNIT

Network 1

UNIT

()

Out
Buffer

UNIT

1`()

1`()

In
Buffer

Receive
ID

Drop

1`()

1`()

1`()
1

1

1

Figure 1.7: A simplified version of the network protocol from Fig. 1.7 created

as a PT-net.

places now have type UNIT and the values of the tokens have been removed.

As no variables exist on any arcs, we no longer have to specify the variables

when discussing enabling. The transition invariant 1‘Send Data ++ 1‘Drop is

preserved. The advantage of considering PT-nets when calculating invariants

is that we only need to compute the inverse of linear functions on integers,

which is computable.

As mentioned, due to Rice’s theorem, it is not possible to answer questions

about a model’s behaviour (at least models described using a Turing Com-

plete [11] modelling language such as CP-nets) or a programs execution by

only looking at the model or program itself. For debugging it is not a prob-

lem that we are unable to give exact answers, as we are often satisfied with

being told about potential errors or proving absence of simple errors, explain-

ing the success of static analysis, which gives a sound answer, meaning that

if the analysis states that no error exists, then no error exists (of the kind we

check). Static analysis is not complete, though, so if static analysis discovers

a problem, this does not necessarily mean that there really is an error. Some

properties are very difficult to determine using static analysis at a level fine

grained enough to be really useful, however. Such properties include whether

allocated memory is always freed exactly once, and whether buffers can over-

or under-flow. When we want to ensure that some run-time property holds, an

approximate answer may not be enough. The idea of dynamic analysis methods

is to explore the behaviour of the system during run-time.

1.3.2 Dynamic Analysis

The simplest way to check the run-time (dynamic) behaviour of a system is to

test it, i.e., execute the system a number of times and manually or automati-

cally check that the behaviour corresponds to the desired behaviour. Tests can

be written manually or created automatically [45] by a computer tool. When

dealing with models, we usually refer to the execution of the model as a simu-

lation of the model. Tests makes it possible to unveil errors that are difficult

to find with static analysis, but do not ensure absence of errors. In order to

ensure absence of errors, we need to ensure that our tests cover all possible

execution paths. In order to do that, we build a reachability graph (also known

as a state space). A reachability graph is a directed labelled graph, where the

14 Chapter 1. Introduction

packets

packets^^
[(id, data)]

id

idid+1

(id, data)

(id, "")

id+1

id

(id, data)

(id, data)

(id, data)

(id, data)

Receive
Ack

Receive
Data

Drop

Send
Data

In
Buffer

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

Receive
ID

1

ID

Network 1

PACKET

Out
Buffer

1`(1, "Formal")++
1`(2, " model")

PACKET

Limit

UNIT()

()

()

2`()

1
1`[]

1 1`1
1 1`1

2

1`(1,"Formal")++
1`(2," model")

2

Figure 1.8: A version of the simple network protocol from Fig. 1.5 with a bound

on the number of possible outstanding packets.

nodes correspond to states of the model and a labelled arc from one node to an-

other, signify that it is possible to go from the state represented by the source

to the state represented by the destination using the transition (and, in the

case of CP-nets, the binding) corresponding to the label of the arc. If we have

the reachability graph available, we can check all properties we can think of.

The problem of this method is that it is difficult to construct the reachability

graph, either because the reachability graph is very large or because it is infi-

nite. As an example in the case of the model in Fig. 1.5, the reachability graph

is infinite, as we can just keep executing the transition Send Data{id = 1, data
= ”Formal”}, producing an arbitrary number of tokens on Network 1, producing

a new state for each number of tokens on Network 1. If we limit the number of

tokens we can put on Network 1 and Network 2, the reachability graph becomes

finite, however. The modified model can be seen in Fig. 1.8. The change is that

we have added a place Limit, which initially contains two uncoloured tokens.

Whenever we add a token to Network 1 or Network 2 we remove a token from

Limit and vice versa. In that way we ensure that there is at most two tokens

simultaneously on Network 1 and Network 2. Having made this change, we ob-

tain the reachability graph in Fig. 1.9. The red node is the initial state and the

green node is the only state with no successor states. The detailed specification

of a state, the state descriptor, is written inside the node. Each state is repre-

sented by the value of the token on the Send ID place, the sequence numbers of

the packets in Network 1, the number of tokens available on Limit, the sequence

numbers of the packets on In Buffer, the value of the token on Receive ID, and

the sequence numbers of the packets on Network 2. The transitions are rep-

resented by an abbreviated version of their name and the sequence number of

the packet being processed. Using this reachability graph, we can, e.g., see that

packets are always received in-order, regardless of how packets are lost. We see

this by observing that on all states of Fig. 1.9 the value of the In Buffer is either

“” (no tokens), “1” or “1; 2”. As the tokens are shown in the order the packets

with the corresponding packets have arrived, we see that we never encounter

the situation “2; 1” or “2”, where the packets are received out of order.

To alleviate the problem that the number of states is very large or infinite,

also known as the state explosion problem [161], we can do several different

things. One idea is to store the reachability graph in a more efficient way or to

1.4. Behavioural Visualisation of Formal Models 15

Send ID: 1
Network 1:
Limit: 2
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1: 1
Limit: 1
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1: 1
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2: 1

Send 1Drop 1

Send ID: 1
Network 1: 1, 1
Limit: 0
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1:
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2: 1

Send 1Drop 1

Receive 1

Receive 1

Send 1Drop 1

Send ID: 2
Network 1: 1
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2:

Ack 1

Send ID: 2
Network 1:
Limit: 2
In Buffer: 1
Receive ID: 2
Network 2:

Ack 1

Send ID: 2
Network 1: 1, 2
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2:

Send 2

Drop 2

Send ID: 2
Network 1: 2
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2:

Send 2

Drop 2

Drop 1

Send ID: 2
Network 1: 2, 2
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2:

Send ID: 2
Network 1:
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 2
Network 1: 1
Limit: 0
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 2
Network 1: 2
Limit: 0
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 3
Network 1: 1
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2:

Send ID: 3
Network 1:
Limit: 2
In Buffer: 1; 2
Receive ID: 3
Network 2:

Send ID: 3
Network 1: 2
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2:

Drop 1

Drop 2Send 2

Receive 2

Receive 2

Receive 2 Ack 2

Ack 2

Ack 2

Drop 1 Drop 1

Send 2 Drop 2 Drop 2

Figure 1.9: The reachability graph of the simple network protocol in Fig. 1.8.

only store enough information that we are later able to reconstruct the reach-

ability graph. Construction of the reachability graph can be done in two ways,

either explicitly or symbolically. Explicit reachability graph analysis explic-

itly store the reachability graph in memory, whereas symbolical reachability

graph analysis only has an implicit representation, e.g., by representing all

states as a logical formula satisfied by exactly the reachable states. For ex-

plicit reachability graph analysis, we often use a reduction technique in order

to only require as much internal memory as is available. Examples of reduc-

tion techniques are the sweep-line method [T1,25,104], which uses a notion of

progress in the model to delete states that cannot be reached again, hash com-

paction [155, 172], which does not store an actual representation of the state

descriptors, but only a hash value calculated from the state descriptor, called

a compressed state descriptor, and the ComBack method [T2], which is an ex-

tension of hash compaction solving the problem of hash collisions, which arise

when two state descriptors have the same hash value, meaning only successors

of one of the states is considered; by maintaining a spanning tree of the reach-

ability graph, it is possible to reconstruct the full state descriptors and resolve

hash collisions. Symbolic reachability graph analysis typically use, e.g., binary

decision diagrams [12] or multi-valued decision diagrams [96] to store states

efficiently.

Another approach is to only guarantee properties on traces of some finite

length. This is known as bounded model checking [8], and relies on tools that

are able to solve the SAT problem [148] for propositional logic, i.e., whether

there exists an assignment to all propositional variables of a given proposi-

tional formula, such that the formula evaluates to true. Bounded model check-

ing is also an instance of symbolic model checking, where states are repre-

sented using boolean formulae.

Another idea is to create a coverability graph [52, 97] instead of a reacha-

bility graph. This method is specific to Petri nets, but the coverability graph

is always finite and allows us to check certain interesting properties, e.g., to

find maximum number of tokens on all places. We get into more detail about

reduction techniques in Chapter 2.

1.4 Behavioural Visualisation of Formal Models

When we have created a formal model of a concurrent system like the network

protocol in Fig. 1.5, we would like to make sure that the constructed model

16 Chapter 1. Introduction

Controller

Model

View

alert change

invoke

observe

Figure 1.10: The Model-View-Controller design pattern.

corresponds to the intended system using the approach in Fig. 1.3. To intro-

duce visualisations of formal models, we will first introduce the Model-View-

Controller (MVC) [100] design pattern [54], which is the foundation for many

approaches to visualisation of formal models.

1.4.1 The Model-View-Controller Design Pattern

A design pattern [54] is a recipe for how to do a certain task in a programming

language. The Model-View-Controller (MVC) [100] design pattern is a recipe

on how to create graphical user interfaces that are able to manipulate a data

structure within the computer. The data structure may represent, e.g., a text

document or the organisation of a company. When using the MVC design pat-

tern, the data structure we wish to manipulate is called the model (not to be

confused with formal models as discussed previously). The user interface the

user see is called the view, and the code able to cause changes to the model

is called the controller. In Fig. 1.10 we see how the three parts of the system

interact. When a user wishes to create a change in the model, an action in the

user interface, i.e., the view, is triggered. An example of this is when a button

is clicked or an item is selected from a menu. This causes the view to invoke
the corresponding function in the controller. The controller then changes the

model accordingly, e.g., removes a line of text or promotes a salesman to man-

ager. When the model is changed, it alerts the view, which observes the model

and updates itself accordingly. This gives the user the impression that the de-

sired update was performed in the user interface and that work is done on the

graphical view of the model rather than on the underlying model itself.

One important consequence of using the MVC design pattern is that it is

possible to have more than one view for each model. When a change is made

in one view, all other views are updated as well. This happens because the

model alerts all views whenever a change occurs. As an example, consider the

interaction depicted in Fig. 1.11. Here two views, View 1 and View 2, are asso-

ciated with a single model. The figure shows that a user initiates an action in

View 1. This causes the view to invoke the corresponding code in the controller.

The controller then changes the model accordingly. The model then alerts both

views, which causes them to observe the model anew. Depending on the imple-

mentation, the model may alert all views before any of them update themselves

according to the model, or each alert may be immediately followed by an up-

date. In Fig. 1.11 we assume that all alerts happen before any observations.

The views can show the same or they can show different aspects of the model.

1.4. Behavioural Visualisation of Formal Models 17

Figure 1.11: How two views associated with the same model are updated.

Figure 1.12: Screen-shot from the Eclipse Java editor.

Consider the screen-shot from Eclipse [41] in Fig. 1.12. Eclipse is a tool for

editing Java programs. Here we see five different views on the class Place from

a coloured Petri nets editor. At the upper right we see the actual code of the

class, and at the lower right we only see the embedded documentation of the

constructor of the class. At the lower left we see an overview of the class, and

at the upper left we see a partial overview of the class hierarchy including the

class Place. Finally, we can see a tool-tip near the mouse in the middle of the

image, which shows an abbreviated version of the documentation for the item

under the mouse. All of these views are different views of the same model and

we see that they show different details about the model. Some show (nearly)

all details and some show very limited details about the model, but whenever

a change is made to one of the views, e.g., if the class is modified in the upper

right window, all the views are updated automatically.

We now let the formal model be the model of the MVC design pattern and

we let the visualisation be the view. The controller is usually the tool used to

simulate the formal model, but may also be integrated with the visualisation.

18 Chapter 1. Introduction

1.4.2 Behavioural Visualisation of Formal Models Using
the Model-View-Controller Design Pattern

If the concurrent system we wish to develop and thus model and visualise is

a simple form-filling application, such as a business intelligence or inventory

application, a visualisation can quite easily be constructed using the idea of a

prototype [44]. A prototype is a simple implementation of a program in which

only limited functionality has been implemented, but otherwise the prototype

looks and behaves as the real implementation. In MVC terms we implement

only the view and very simplistic models and controllers. Prototypes are valu-

able as a tool for testing a user-interface before a costly construction of the

real product. The idea is that it is very easy and cheap to create a reason-

ably professional-looking user interface using a GUI-builder, such as Borland

JBuilder [90] or Microsoft Visual Studio [167]. Normally, we would then ex-

tend the purely visual prototype with simple code that make the prototype act

as expected of the real program. If we, instead of a simplistic implementation

of the model and controller, use a formal model in place of the model and the

simulation tool as controller, we get a product whose behaviour is defined by a

formal model. As the GUI is a view of the formal model, it is possible to see

the state of the formal model. Whenever the formal model’s state is updated,

the GUI is updated accordingly. By letting actions performed in the GUI corre-

spond to actions in the formal model, it is also possible to stimulate the formal

model, and it is thus possible to see and stimulate the execution of the formal

model using a standard GUI.

Some times the model is not modelling a simple form-filling application,

however. As an example, the network protocol from Sect. 1.2 is a more complex

system. It is not obvious how we should create a user-interface that allows us

to observe the behaviour of the system as a network protocol would not have

a graphical user-interface except for configuration purposes. We could, how-

ever, create a visualisation rooted in the network diagrams used to diagram

the layout of a large network, where all machines are drawn as icons and pack-

ets as coloured dots like the one in Fig. 1.13. The figure shows the sender to

the left and the receiver to the right. The cloud represents the network. The

coloured dots represent packets; green packets contain data en route from the

sender to the receiver while red dots correspond to acknowledgements en route

in the other direction. The number in the dots shows the sequence number of

the packet. Below the sender and receiver, we see counters, representing the

counters on Send ID respectively Receive ID. Currently both of these are 1. We

may be able to transmit packets by clicking on the sender. The graphics in

Fig. 1.13 is updated while packets are transmitted, e.g., to show whether pack-

ets are dropped or successfully received as well as to show the current values

of the counters. If we implement code which is able to show and maintain a

visualisation like the one in Fig. 1.13, we can use it as view, the formal model

as model and the simulation tool as controller as in the case of the GUI appli-

cation. This is an example of a domain specific visualisation, as we have used

a visualisation that is likely to be familiar to the domain expert.

In this manner we can implement a model-based prototype, which has sev-

eral advantages over a normal prototype or an implementation. As an example,

it is possible to abstract away certain implementation details. In the case of the

network protocol, we are able to ignore any operating system-specific network

access and encoding/decoding of binary data. Compared to creating a proto-

type written entirely in, e.g., Java we also obtain a formal specification of the

system we wish to implement without representing the dynamics of the pro-

tocol twice, once in the prototype and once in the formal model. The formal

1.5. Relationship between Formal Model and Implementation 19

 �Sender Receiver

1

1

Figure 1.13: Visualisation of a simple network protocol.

House:

-

- 180
2

Specification

brick red

Blueprint
Implementation

Manual

Manual

(a)

Network

protocol:

- handle

loss

- 2 nodes

Specification

Manual

Manual

Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

Implementation

(b)

Figure 1.14: Manual construction.

model can be used for analysis or as basis for an implementation as discussed

in the next section. The use of a domain specific graphical user interface (the

visualisation) has the advantage that the design can be experimented with and

explored without having knowledge of the formal modelling language.

1.5 Relationship between Formal Model

and Implementation

Once we have constructed a formal model, we validate that it reflects the sys-

tem we want to construct using the approach shown in Fig. 1.3 and described

in Sect. 1.4. Then, we verify that the model satisfies the requirements we may

have using the method shown in Fig. 1.4 and described in Sect. 1.3. The next

step is then to actually implement the system. In this section we look at four

ways to arrive at an implementation based on a formal model.

The most straightforward way to obtain an implementation corresponding

to a formal model is to look at the formal model and the specification and man-

ually create the implementation, relying on experience to make a reasonable

translation. This approach is shown in Fig. 1.14(b). This approach corresponds

to how we would build a house from the architect’s drawings (Fig. 1.14(a)). Ad-

vantages of this approach are that it is light-weight, easy to understand, and

easy to start using: it is easy for somebody who understands the formalism

used to describe the formal model to create the implementation. This approach

is also the one seeing the widest use, and has been described under some form

as the waterfall model [147], and the idea also underlies the widely used Ca-

pability Maturity Model (CMMI) [30]. The major disadvantages are that the

manual step is prone to human errors, and a lot of difficult decisions are hid-

den in the art of the manual translation. This approach can be used with any

reasonable formalism and any tool, as the modelling phase is only present to

clarify the specification.

An obvious way to make the approach less prone to human errors is to elim-

inate the manual step from the formal model to the implementation and let

a computer create the final system from the formal model. This can be seen

Fig. 1.15. In the real world this corresponds to building a machine that builds

houses from the architect’s drawings with no human intervention. This ap-

20 Chapter 1. Introduction������
- re

- 180 m2

Specification

brick red

Blueprint

Manual

Automatic

Implementation

(a)

Network

protocol:

- handle

loss

- 2 nodes

Specification

Manual

Automatic

Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

Implementation

(b)

Figure 1.15: Synthesis.

proach actually solves both of the problems with the manual approach. As

the step from model to the implementation is automatic, it is not possible for

humans to introduce errors in this step. Also, as we have to construct the ma-

chine constructing the implementation from the model, we cannot hide difficult

decisions. We have to find a solution to all difficult problems or the machine

will not work. This corresponds to how high-level languages translate “easy-to-

understand” programs written in high-level languages as Java or C# into lower

level byte-code, which can be executed by (virtual) machines. The problem is

that it is not obvious how this can be done without introducing limitations to

what kinds of systems can be built or making the modelling language very com-

plex. Currently, successful attempts at this method either restrict themselves

to a certain domain, e.g. workflow modelling [164] as implemented by Machado

et al. in [114], or they limit themselves to creating skeleton programs only, i.e.,

programs where only the main structure is automatically derived, and all the

details have to be filled in by humans as done by, e.g., Hauser and Koehler

in [68]. Thus the step from model to implementation is semi-automatic only.

Another approach, which is not feasible in the physical world, is to man-

ually construct the implementation and automatically derive the model from

the implementation, as shown in Fig. 1.16. Should we try finding a parallel

in the physical world, we can compare this method to creating a blueprint of a

house after it has been built by measuring the size of all rooms. This method

is intended to find errors in the implementation and builds on the fact that

comprehensive testing of the actual implementation is typically computable

infeasible, whereas testing an abstraction, a model, may be feasible. The idea

is to automatically derive a model from the implementation and verify formal

requirements on the model. If a requirement is not satisfied by the model, we

retry the exact same test in the implementation to verify if the error is repro-

ducible there. If it is, we must fix the implementation, derive a new model

and re-run the test. If the error is not reproducible in the implementation, we

must refine the model until it is no longer possible to reproduce the error in the

model. The major advantage of this method is that it really does find errors,

as can be illustrated by two example implementations: One implementation is

Holzmann and Smith’s FeaVer [51, 79], where a human assists the computer

in deriving the formal model from programs written in the C programming

language [98]. Refinement is done manually as well, if required. FeaVer has

been used to verify Lucent’s PathStarTM access server for telephony [80]. A

more recent method is to fully automatically derive the model from the pro-

gram and automatically refine the model based on automatic testing against

the implementation, as implemented in Microsoft’s SLAM [4, 152] for testing

device drivers. As device drivers run in a privileged mode in the operating

system they have the ability to crash the entire computer when failing, so cor-

rect operation is important. As can be seen from the examples, some of the

major players in the computer industry are interested in this approach as it

is very well-suited and efficient for finding errors in programs. The approach

is fairly easy to use, but it is still too time-consuming and costly to use this

1.5. Relationship between Formal Model and Implementation 21

House

- red

- 180 m2

Specification

brick red

Blueprint

Manual

automatic/

semi-automatic/

manual

Implementation

(a)

Network

protocol:

- handle

loss

- 2 nodes

Specification

Manual

automatic/

semi-automatic
Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

Implementation

(b)

Figure 1.16: Testing using automatically generated formal models.

House

- red

- 180 m2

Specification

brick red

Blueprint

Manual

Automatic/

semi-automatic

Manual

Does roof
fall down
Is house
red?

Tests

Yes

Ok

House is
red
Roof fell
down

Error report

No

Fix

Engineer

Implementation

(a)

Network

protocol:

- handle

loss

- 2 nodes

Specification

Manual

Automatic/

semi-automatic

Manual Are

packages

lost?

Can 2 nodes

be handled?

Tests

Yes

Ok

Packages
are lost
Only one node
can be
handled

Error report

No

Fix

Formal model

!"#$#%&%'

"#()

"#

"# "#()

!"#$#%&%'

!"#$**'

!"#$#%&%'

"#

!"#$#%&%'!"#$#%&%'

+,-.

/010"20
314

/010"20
+%&%

506#
+%&%

/010"20
7#

)8)

7+

90&:-,4;<

=3>?@A

90B&
7#

)8)

7+

90&:-,4;)

=3>?@A

CD&
EDFF0,

)8!)$*E/7A90G*'((
)8!<$*;"H;1--*'((
)8!I$*JKKKKKK*'

=3>?@A

Verifier

Implementation

Automatic

(b)

Figure 1.17: Using formal models to generate tests of the implementation.

method for non-critical systems. The major disadvantage of this approach is

that it solely focuses on finding errors after the implementation has been cre-

ated, which may be much more expensive than finding and fixing the error

before implementation is even started. Another disadvantage is that the auto-

matically derived abstract model may be less efficient than a humanly derived

abstraction, making it infeasible to analyse.

The final approach to correct systems we will consider in this thesis is a

combination of all the previous methods. This approach is outlined in Fig. 1.17.

The idea is that we manually construct a model from the specification (and en-

sure that is correspond to the customer’s idea of the system using visualisations

as in Fig. 1.3). We can then verify that the model satisfies the requirements,

using the verification approach in Fig. 1.4. After all requirements have been

successfully verified, we construct the implementation from the specification

and the model (manually as in Fig. 1.14 or automatically/semi-automatically

as in Fig. 1.15). Now we automatically or semi-automatically derive tests from

the model. The tests are run on the implementation and errors in the imple-

mentation revealed during this are then fixed. This approach has a lot of the

advantages over the previous methods: it is possible to find errors early in the

construction, it is fairly easy to get started, and the tests of the implementa-

tion ensures that the number of human mistakes introduced by going from the

model to the implementation is minimised. We can check the behaviour of the

implementation against the model by simply executing the two in parallel and

check whether it is possible for the implementation to do something which is

not allowed by the model. This has, e.g., been done by Larsen et al. in UPPAAL-

TRON [107]. Of course the quality of the results is dependent on the quality of

the model, as errors in the implementation also present in the model will not

be reported, so validation of the model is still important prior to testing.

The most suitable approach depends on the situation. If all we want to do

22 Chapter 1. Introduction

is to find errors in programs which have been written, e.g., ten years ago, we

should use the approach in Fig. 1.16. If we are in a situation where an im-

plementation can automatically be synthesised from the model, we should use

the method in Fig. 1.15 and skip or significantly shorten the testing phase. If

resources are limited or the importance of the implementation is very limited,

we may use the approach in Fig. 1.14 (maybe even skip the modelling phase

and go directly from specification to the implementation) and save resources

for more critical projects. If none of the other apply, the method in Fig. 1.17

may be applicable, as it makes fewer assumptions of the system to implement.

1.6 Reading Guide

This thesis in structured as follows: In Chapter 2 we consider analysis of for-

mal models using the reachability graph method. The contribution in this area

consists of two new reduction techniques. In Chapter 3 we look at different

ways and tools to visualise the behaviour of a formal model. This chapter can

be read independently of Chapter 2. The contribution in this area consists

of the development of a tool, the BRITNeY Suite, facilitating visualisation of

formal models as well as the development of a general framework for tying vi-

sualisations to formal models, giving visualisations a formal semantics, which

makes it possible to visualise error reports from reachability graph analysis.

In Chapter 4 we summarise the first part of this thesis. Part II of the thesis

(Chapters 5—8), contains papers by the author of this thesis within the fields

of reachability graph analysis (Chapters 5 and 6) and behavioural visualisation

of formal models (Chapters 7—9).

To make it easier to distinguish papers that are part of this thesis and pa-

pers co-authored by the author of this thesis from papers authored by others,

references to papers that are part of this thesis are prefixed with a T (for the-

sis), as in [T2], references to papers that are not part of this thesis but co-

authored by the author of this thesis are prefixed with a C (for co-authored),

like [C5], whereas other papers have no prefix, e.g., [91].

1.6.1 Brief Summary of Papers

Here we give a very brief summary of the papers in Part II of this thesis. For

more extensive summaries and discussion of the papers, readers should turn

to Chapters 2 and 3.

Obtaining Memory-Efficient Reachability Graph Representations

Using the Sweep-Line Method

[T1] T. Mailund and M. Westergaard. Obtaining Memory-Efficient Reacha-

bility Graph Representations Using the Sweep-Line Method. In Proc.

of TACAS’04, volume 2988 of LNCS, pages 177–191. Springer-Verlag,

2004.

This paper extends the sweep-line method [25, 104] to allow checking proper-

ties that are more complex than invariants by generating a near-optimal repre-

sentation of a reachability graphs using the sweep-line method. The idea is to

represent states using a number and only maintain a mapping from state num-

bers to state descriptors for a limited set of states, namely the states in front

of a sweep-line, which tries to separate states that still needs exploring from

states that have already been explored and will not be encountered again. The

1.6. Reading Guide 23

method is demonstrated to use significantly less memory on examples where

there is a clear notion of progress, i.e., where there are few transitions leading

to states that have already been explored. In addition, the method performs

reasonable for examples without no clear notion of progress.

The ComBack Method—Extending Hash Compaction with

Backtracking

[T2] M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The Com-

Back Method – Extending Hash Compaction with Backtracking. In Proc.

of ATPN’07, volume 4546 of LNCS, pages 446–464. Springer-Verlag,

2007.

The idea of the ComBack method is to augment the hash compaction reduction

technique [155, 172] by maintaining a spanning tree from the initial state to

each encountered state. Hash compaction creates a compressed state descrip-

tor from the original state descriptor using a hash function. Hash collisions,

i.e., when two different state descriptors have the same compressed state de-

scriptor, makes this method incomplete. Using the ComBack method we can

use the spanning tree to translate each compressed state descriptor to all cor-

responding state descriptors, making it possible to discover hash collisions on-

the-fly. The method is demonstrated to use around 25% of the memory required

to store the reachability graph at the cost of using 100%− 1000% of the time.

The BRITNeY Suite Animation Tool

[T3] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool.

In Proc. of ICATPN’06, volume 4024 of LNCS, pages 431–440. Springer-

Verlag, 2006.

This paper describes the BRITNeY Suite visualisation tool, which makes it

possible to visualise the execution of formal models. The tool is able to inter-

act automatically with CPN Tools [C1, 33], a tool for editing and simulating

coloured Petri nets. The tool allows the use of extension plug-ins, which makes

it easy to extend the tool with new kinds of visualisations, but the tool also

comes pre-packaged with around 20 plug-ins, making it easy to get started.

The usefulness of the tool is demonstrated using two industrial case-studies.

Model-based Prototyping of an Interoperability Protocol for Mobile

Ad-hoc Networks

[T4] L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Pro-

totyping of an Interoperability Protocol for Mobile Ad-hoc Networks. In

Proc. of IFM’05, volume 3771 of LNCS, pages 266–286. Springer-Verlag,

2005.

This paper describes an industrial case study where coloured Petri nets have

been used to create a prototype of a network protocol. The prototype uses the

BRITNeY Suite for visualisation of the behaviour of the model (much like the

approach in Fig. 1.3). The prototype has been used for discussing the model

during model- and protocol-design as well as for demonstration for manage-

ment with little knowledge of formal models. The paper argues that a model-

based prototype can be much more efficient than a physical prototype, as we

are able to abstract implementation details away and we do not have to worry

about real hardware, which makes it easier to control scenarios and easier to

scale the prototype.

24 Chapter 1. Introduction

A Game-theoretic Approach to Behavioural Visualisation

[T5] M. Westergaard. A Game-theoretic Approach to Behavioural Visualisa-

tion. Submitted, 2007.

A lot of different tools supporting visualisation of the behaviour of formal mod-

els exist, but they are typically designed in an ad-hoc manner, which often

means that the semantics of the visualisation is not well-defined. Furthermore,

the tools usually mainly allow simple inspection of the formal model during ex-

ecution, or require that the user spends a lot of time tying the visualisation to

the model. This paper regards visualisations as games, i.e., labelled transition

systems where the transitions are separated into controllable and uncontrol-

lable transitions. Visualisations are synchronised with models, whose seman-

tical domain also is games, such that uncontrollable transitions of the model is

synchronised with controllable transitions of the visualisation and vice versa.

The paper gives two example visualisations and provide an application, namely

visualisation of error reports of reachability graph analysis.

Chapter 2

Behavioural Verification by Means of

Reachability Graphs

This chapter considers the implementation of the verifier box from Fig. 1.4.

The job of the verifier is to check whether a model, denoted by M, satisfies a

given property, denoted ϕ. If M satisfies ϕ, we say that M is a model of ϕ,

and we write M |= ϕ. The task of checking whether M |= ϕ is called model

checking.

In this chapter we will introduce the basic idea behind reachability graph

analysis (also known as state space analysis) and a number of reduction tech-

niques, i.e., variations of the basic reachability graph algorithm that make

analysis possible for larger systems of certain classes of models (which class

depends on the reduction technique). We start by introducing the basic algo-

rithm for reachability graph construction in Sect. 2.1. We then turn to describ-

ing reduction techniques in general in Sect. 2.2, and the sweep-line method

[25,104] in Sect. 2.2.1 and the hash compaction reduction technique [155,172]

in Sect. 2.2.2. We give a summary of the papers [T1] and [T2] co-authored by

the author of this thesis in Sects. 2.3 and 2.4. Full versions of the papers [T1]

and [T2] can be found in Chapters 5 and 6, respectively. The paper [T1] extends

the sweep-line method to allow checking more complex properties and [T2]

makes the incomplete hash compaction reduction technique complete. We sum

up the chapter by discussing the contribution of the papers [T1] and [T2] and

provide directions for future work.

2.1 Basic Reachability Graph Analysis

To make our discussion of behavioural verification independent of the concrete

modelling formalism, we will use an abstract definition of the behaviour of

a formal model, namely a labelled transition system. A labelled transition

system captures the intuition that a formal model starts in a certain state and

progresses according to a transition relation:

Definition 2.1 (Labelled Transition System) A labelled transition sys-

tem (LTS) is a tuple, LT S = (S, T , ∆, sI), where

• S 6= ∅ is a set of states,

• T is a set of transitions,

• ∆ ⊆ S × T × S is the transition relation indicating successor states,

• sI ∈ S is the initial state.

25

26 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Let s, s′ ∈ S be two states and t ∈ T a transition. If (s, t, s′) ∈ ∆, then t
is said to be enabled in s and the occurrence (execution) of t in s leads to the

state s′. This is also written s
t
−→ s′. An occurrence sequence is an alternating

sequence of states si and transitions ti written s1
t1−→ s2

t2−→ s3 · · · sn
tn−→ sn+1

and satisfying si
ti−→ si+1 for 1 ≤ i ≤ n. We use →∗ to denote the transitive

and reflexive closure of ∆, i.e., s →∗ s′ if and only if there exists an occurrence

sequence s1
t1−→ s2

t2−→ s3 · · · sn
tn−→ sn+1, n ≥ 1, with s = s1 and s′ = sn+1. A state

s′ is reachable from s if and only if s →∗ s′, and reach(s) = { s′ ∈ S | s →∗ s′ }
denotes the set of states reachable from s.

We will often like to verify some invariant property, I : S → {tt, ff}, of all

states reachable from the initial state, i.e., check whether ∀s ∈ reach(sI).I(s)
holds. The most naive way to do that is by checking if it holds for the initial

state. If it does not, we know the property does not hold for all states. If the

property does hold for the initial state, we recursively check the property for all

successor states. It is evident that this algorithm does not terminate if the in-

variant holds and we can reach an infinite number of states, i.e., if |reach(sI)| =
∞ and ∀s ∈ reach(sI).I(s). Even if the number of reachable states is finite, the

algorithm will not terminate if the invariant holds and it is possible to reach

some state state from itself by a non-empty transition sequence, i.e., when

|reach(sI)| < ∞ but ∀s ∈ reach(sI).I(s) and ∃sb, s ∈ reach(sI).sb →∗ s′ → sb, as

the recursive check of successor states will eventually encounter the state sb,

and, as sb →∗ sb, loop when trying the validate the invariant for sb.

In order to overcome this problem, we build a reachability graph. A reacha-

bility graph is a directed labelled graph, where the nodes correspond to states

of the model and a labelled arc from one node to another, signify that it is pos-

sible to go from the first state to the second using the transition corresponding

to the label. Formally, the reachability graph is the directed graph (V,E) where

V = reach(sI) is the set of nodes and E = {(s, t, s′) ∈ ∆ | s, s′ ∈ V } is the set of

edges. An edge (s, t, s′) has s as source and s′ as destination and the label is

t. The reachability graph can be constructed using Algorithm 1, which makes

the recursion stack explicit as the data-structure W . The intuition is that W
contains states for which we have not yet calculated successor states whereas

V and E contains the nodes, respectively edges, of the reachability graph for

the states for which we have already calculated successor states. This algo-

rithm not only terminates as long as |reach(sI)| < ∞, it is also more efficient

than the previous algorithm, as successors are only calculated once for each

state. Using the reachability graph, we can traverse all states of V and check

the invariant property I, even if S is infinite as long as V is finite. Algorithm 1

terminates iff |reach(sI)| < ∞ and ∀s ∈ reach(sI).|{(s, t, s′) | (s, t, s′) ∈ ∆}| < ∞.

This is a dynamic property, however, and can only be decided by generating

the reachability graph (or something equivalent). To obtain a syntactic way

to decide if the reachability graph is finite, we observe that reach(sI) ⊆ S and

∀s ∈ S.{(s, t, s′) | (s, t, s′) ∈ ∆} ⊆ ∆ ⊆ S × T × S, so it is a sufficient but not

necessary condition that S and T are finite for Algorithm 1 to terminate. If a

Place-transition Petri net is bounded, i.e., if the number of tokens on all places

in all reachable states is less than some constant, the set of possible states,

S, is finite (or can be picked to be finite). If we furthermore assume that the

PT-net only has a finite number of transitions, Algorithm 1 always terminates.

Some PT-net models are bounded by design. As an example, 1-safe PT-nets

only allow transitions to be executed if it does not lead to more than one token

on any place. Initially all places contain at most one token, so the number of

tokens never exceed 1. Some PT-net models can be shown to be bounded, e.g.,

using place invariants or coverability graphs as described later. We can imple-

2.1. Basic Reachability Graph Analysis 27

ment this algorithm by representing V and E as hash tables and W using, e.g.,

a queue or a stack.

Algorithm 1 Basic reachability graph algorithm.

Require: LT S = (S, T,∆, sI) a labelled transition system

Ensure: (V,E) the corresponding reachability graph

1: V := {sI}
2: W := {sI}
3: E := ∅
4:

5: while W 6= ∅ do

6: Select an s ∈W
7: W := W \ {s}

8: for all t, s′ such that s
t
−→ s′ do

9: E := E ∪ {(s, t, s′)}
10: if s′ /∈ V then

11: V := V ∪ {s′}
12: W := W ∪ {s′}
13:

14: return (V,E)

If |reach(sI)| = ∞, Algorithm 1 will not terminate. If |reach(sI)| is finite but

very large, the algorithm may not terminate successfully. The problem that

the reachability graph can be very large or infinite for even simple models is

known as the state explosion problem [161]. The state explosion problem can

be the cause for unsuccessful execution of Algorithm 1 for several reasons. As

an example, the available memory can be exhausted causing the algorithm

to terminate prematurely or causing the operating system to start swapping

internal memory to disk, leading to vastly decreased performance of the algo-

rithm as it it ill-suited for external memory. The problem is basically line 10

of Algorithm 1, as the check whether s′ ∈ V will require access to external

memory almost every time. Another problem is that the execution may simply

take too long for the result to be interesting, e.g., if the calculation takes two

months but the space robot we verify has to launched in one month. If the

reachability graph is infinite we must use a method to represent it using only

a finite amount of memory, e.g., by representing the graph using graph gram-

mars [140], representing equivalence classes of states of the real reachability

graph [26,92], or by using a coverability graph [52,97] instead of a reachability

graph. The first two ways of representing infinite reachability graphs can be

used for any formalism, whereas the coverability graph can only be constructed

for Petri nets.

The idea of the coverability graph is based on the observation that transi-

tions of Place-transition Petri nets are monotone, i.e., that adding more tokens

do not inhibit the execution of transitions or alter the effect of executing tran-

sitions1. Thus, if we reach a state, s′, which has at least the same number of to-

kens on all places as a previously visited state, s, written s′ ≥ s, all transitions

enabled in s will also be enabled in s′ (this is the definition of monotonicity).

Thus it is possible to execute the transition sequence leading from s to s′ an

arbitrary number of times, each time producing more tokens. We can replace

the number of tokens on places in s′, which contains strictly more tokens than

1Certain extensions of PT-nets do break monotonicity, however, e.g., inhibitor arcs [21] that

checks for absence of tokens, or bounds on places that prevent adding more than a fixed number of
tokens to places.

28 Chapter 2. Behavioural Verification by Means of Reachability Graphs

in s, with infinity (∞), representing that it is possible to generate an arbitrary

number of tokens on these places. As an example, in the case of the PT-net

model of a network protocol in Fig. 1.7, we see that by executing Send Data we

reach a state where the number of tokens on all places except Network 1 are

the same as in the initial state. On Network 1 we have one more token after

executing Send Data, so we replace the number of tokens on Network 1 with∞,

signifying that by executing Send Data an arbitrary number of times, we can

produce an arbitrary number of tokens on Network 1. The coverability graph

can be used for, e.g., determining upper bounds on the number of tokens on

each place and thus whether the PT-net is bounded, so it is possible to use the

coverability graph to determine if the reachability graph of a PT-net is finite.

The coverability graph method cannot immediately be used for CP-nets as it

is not possible to define a canonical ordering of states which makes transitions

monotone and still guarantees that the coverability graph is finite as the types

of places can be infinite.

In the rest of this chapter we will only consider finite but large reachability

graphs. We are thus interested in reduction techniques for storing reachability

graphs efficiently.

2.2 Reduction Techniques

Reduction techniques for finite reachability graphs basically fall into two cat-

egories: algorithms for explicit representation of the reachability graph and

algorithms for symbolic representation of the reachability graph. Reduction

techniques for explicit reachability graph analysis, basically fall into four cat-

egories: methods that explore only a subset of the reachability graph directed

by the verification question [42, 134, 160]; methods that use external storage

to store the set of visited states [153, 156]; methods that delete states from

memory during reachability graph exploration [25,60]; and methods that store

states in a compact manner in memory [T1, T2, 57, 76, 93]. Symbolic reach-

ability graph analysis typically use binary decision diagrams (BDD) [12] or

multi-valued decision diagrams (MDD) [96] to store states, or represent each

state of the system as a propositional formula and rely on a SAT-solver [148],

e.g., MiniSAT [43] or HyperSAT [83], to do bounded model checking [8]. We

will first take a look at some symbolic techniques and then turn to examples of

reduction techniques from each of the four categories.

Symbolic reachability graph analysis using BDDs relies on representing

each state of the system as a bit-vector. A set of bit-vectors can be efficiently

represented using a finite automaton accepting exactly the bit-vectors in the

set, and BDDs are one way to represent such automatons efficiently. BDDs

reduce the memory needed to store each state by sharing the representation

of common parts of the bit-vectors. If we cannot represent the state as a bit-

vector, e.g., in the case of PT-nets where we have no a priori bound for all places,

we can use MDDs, which are able to represent strings of integers using similar

techniques as BDDs.

The basic idea of bounded model checking is to encode all executions of the

system after executing k transitions as a boolean formula Mk. We conjunct this

with a formula, ¬ϕk, which states that a property ϕ does not hold after execut-

ing k transitions. If (and only if) Mk ∧¬ϕk is satisfiable, an execution of length

k which does not satisfy ϕ is found. We assume that a state of the system can

be encoded as a vector, s, consisting of n boolean variables, s[0], . . . , s[n − 1].
We let s0 be the initial state and let I(s0) be a propositional formula encoding

the initial state. We let T (si−1, si) be a formula that is satisfiable if there is a

2.2. Reduction Techniques 29

transition leading from the state si−1 to the state si. The formula Mk is then

expressed as Mk = I(s0) ∧
∧k

i=1 T (si−1, si). If we take k = 2n, we are guaran-

teed to reach all possible states, as at most 2n different states can be encoded

using n boolean variables, and after executing 2n steps we are thus guaranteed

to have reached either states with no successors or previously seen states and

therefore we have discovered a loop in the reachability graph. If we want to

model check an invariant property, I, we can take ϕk =
∨k

i=0 ¬I(si). Bounded

model checking relies on solving the problem of whether a propositional for-

mula is satisfiable. This is referred to as the SAT problem and is a well-known

NP-hard problem [55]. This means that no known algorithm can solve the

problem in time polynomial in the number of variables. There exist, however,

very efficient heuristics, and the advantage of bounded model checking is that

we check all states reachable in k steps in a single iteration. Bounded model

checking is only applicable if we can encode the state of the system as a vector

of boolean variables, which is, e.g., the case for bounded Place-transition Petri

nets when the bound is known in advance.

The main problem with symbolic model checking is that it works best if

all reachable states can be represented using a bit-vector or vector of boolean

variables of the same size. This is not the case for CP-nets, which is why we are

mainly interested in explicit reachability graph analysis. For example the CPN

model of a network protocol in Fig. 1.8 contains integers, which in principle

can grow unbounded as well as a list of packets (on In Buffer) which is also

in principle able to grow arbitrarily long. Even if a bound can be found, it

will often be very large as CPN states are often hundreds of bytes, so symbolic

model checking would need to deal with thousands of bits/boolean variables,

rendering the methods virtually useless for CP-nets.

Now let us instead consider explicit reachability graph analysis. Depending

on the property we want to check, we may not need to explore all reachable

states to be able to provide correct answers. One way to only explore a subset

of all states is to use a partial order reduction [28,136]. Partial order reduction

exploit the fact that some transitions can be executed in any order yielding

the same result. As an example, consider a state, s. If we can execute the

transitions a and b concurrently, i.e., if s
a
−→ s′

b
−→ s′′′ and s

b
−→ s′′

a
−→ s′′′. If we are

only interested in the behaviour after executing both transitions, we only need

to consider one of the two execution sequences. This allows us to check, e.g.,

whether a system has any dead-locks, i.e., states with no enabled transitions.

As the number of possible execution sequences grow exponentially as a function

of the number of concurrently enabled transitions, only exploring one (or a few)

of them yields a huge optimisation. The problem is, of course, identifying such

sets of transitions. For PT-nets, we can check if all tokens required by a set

of transitions are available by adding the number of tokens consumed for all

transitions of the set. If all tokens are available the transitions can be executed

concurrently. For non-monotone formalisms the analysis is more complex, as

we also have to check whether the execution of one of the transitions in the set

can inhibit the enabling of some of the others. There are numerous variants

of partial order reductions, such as ample sets [134, 135], persistent sets and

sleep sets [58, 59, 171], and stubborn sets [160]. Another way to only explore

parts of the reachability graph is to use a weight function, which assigns higher

weight to transitions that are likely to lead to states violating the property

we wish to check. This is known as directed model checking [42], and such

weight functions can either be provided manually by the user or, in some cases,

computed automatically.

30 Chapter 2. Behavioural Verification by Means of Reachability Graphs

External memory algorithms [153, 156] for reachability graph analysis ba-

sically store states on disk sorted according to some ordering of the states.

Storing states and checking whether states are already stored are batched,

minimising the number of disk accesses required. In addition, an in-memory

cache is used to further minimise the number of disk accesses required. While

such algorithms are interesting, computers today often have enough memory

available, counting in gibi-bytes on laptop computers to hundreds of gibi-bytes

on large servers, that by just representing states more efficiently we can anal-

yse systems for which filling internal memory would take weeks or months, in

particular when analysing CP-nets, where calculating enabled transitions can

be very time-consuming.

Among methods which delete states from memory during exploration are

the state caching [60] and sweep-line methods [25, 104]. State caching basi-

cally performs a depth-first traversal of the reachability graph. Rather than

storing all states of the reachability graph, only the states on the depth-first

stack are guaranteed to be stored. If enabled transitions can be processed in

a deterministic way, this will terminate whenever the reachability graph is fi-

nite. It is possible that the successors of certain states are explored more than

once, however. This happens for states with more than one transition leading

to them, i.e., if s′
a
−→ s and s′′

b
−→ s for s′, s′′ ∈ reach(sI) and (s′, a) 6= (s′′, b). In

that case s will be explored more than once. In order to minimise the number of

re-explorations, some states are cached in memory, even if they are not on the

depth-first stack. Several methods [19, 40, 56] aims at finding clever ways to

decide which states should be kept in memory and which should be discarded.

Another method for intelligently removing states from memory during analysis

is the sweep-line method, which uses a specification to detect when a state will

not be encountered again. We go into more detail about the sweep-line method

in Sect. 2.2.1, as it is needed to understand the summary of the paper [T1] in

Sect. 2.3.

Several algorithms for storing states more efficiently exist, some are depen-

dent on the formalism used and some are independent of the formalism used.

For CP-nets, we can use an approach similar to BDDs for storing states, namely

storing states in a tree sharing common parts of the state [24]. The idea is to

observe that CP-nets are split into places and that the tokens on one place can

also be encountered on other places or on the same place in other states. Fur-

thermore the effects of transitions on CP-nets are usually local, meaning that

only a few places are modified when an enabled transition is executed. By stor-

ing identical marking of places (multi-sets of values) only once, we can thus

obtain a reduction in the memory required to store the state of a CPN model.

The representation of a state just refer to the correct marking of each place.

This can be used with the network protocol to share the markings of Send
ID and Receive ID as well as the empty markings of the two network places.

Furthermore, CP-nets are extended with a simple module concept, and the lo-

cality of transitions means that often only markings of places in one or a few

modules are changed. By furthermore representing the state of each module

separately, it is possible to re-use the representation of all unchanged modules.

This method is implemented in CPN Tools [C1, 33]. Bit-state hashing [76] is a

formalism-independent approach to storing states efficiently. Bit-state hashing

uses a hash function to compute a hash value for each state. This hash value is

then used as index in a bit-array (modulo the size of the array) to set a bit in-

dicating a state with that hash value has been encountered. If multiple states

have same hash value this will lead to a hash collision, i.e., two different states

are considered the same because they have the same hash value. To reduce this

2.2. Reduction Techniques 31

problem one can use more than one hash function or a linear combination of

two or more independent hash functions using double hashing [38]. Hash com-

paction [155,172], like bit-state hashing, applies a hash-function to each state.

Instead of using the hash value as index in an array, the hash value itself is

stored. Hash-compaction will be discussed in further detail in Sect. 2.2.2, as

the ComBack method described in the summary of the paper [T2] in Sect. 2.4

builds on hash compaction.

2.2.1 The Sweep-Line Method

The sweep-line method [25, 104] introduced by Christensen, Kristensen, and

Mailund is an example of a method that deletes states during the analysis.

The idea is to introduce a progress measure assigning to each state a progress

value, ψ : S → N. In fact, the progress measure can assign progress values

from any partially ordered set, but for simplicity we will here assume that we

use integers as progress values. In the basic sweep-line method from [25] the

idea is to require that if s −→ s′ then ψ(s) ≤ ψ(s′). The progress measure is

thus a syntactical way to recognise whether a state s′ is reachable from s (if

ψ(s′) < ψ(s) it is not). In the network protocol example from Fig. 1.8, we can

let the progress value of each state be the sum of the Send ID and Receive ID
counters. In Fig. 2.1 we have written the progress value of each state as a

large number to the upper left of each state. Each state is represented by the

value of the token on the Send ID place, the sequence numbers of the packets

in Network 1, the number of tokens available on Limit, the sequence numbers of

the packets on In Buffer, the value of the token on Receive ID, and the sequence

numbers of the packets on Network 2. The initial state is marked by a red

background. The progress value of each state is thus the sum of the numbers

next to Send ID and Receive ID. Transitions are represented by an abbreviated

version of their name and the sequence number of the packet being processed.

We note that in this case s −→ s′ implies ψ(s) ≤ ψ(s′) for all reachable states.

We explore the reachability graph by always picking states with the lowest

progress values first. This means that we can safely delete states with lower

progress values because of the contraposition of the requirement for a progress

measure, namely that if ψ(s) < ψ(s′) then ¬s −→ s′, which can be extended to

that if ψ(s) < ψ(s′) then ¬s→∗ s′. Conceptually, the progress measure defines a

sweep-line, so that states behind the sweep-line have all been processed and we

know that none of the currently unexplored states will have transitions leading

to states behind the sweep-line, so they can safely be removed from memory.

In Fig. 2.1 the thick arrow below the states shows the direction we explore the

reachability graph. If we draw a vertical line, like the one between the states

with progress values 3 and 4, we notice that at no point do transitions cross

the sweep-line from right to left (except that states with progress measure 4

use 2 columns for easier display). The basic sweep-line algorithm is given in

Algorithm 2. The changes from Algorithm 1 is that we in line 6 select one

of the states with the smallest progress value rather than an arbitrary state,

we remove states from V with lower progress measure than any state in W
in line 13, and we remove any edges that are connected to states that have

been removed in line 14. The algorithm can be implemented by representing

W using a priority queue with ψ as the priority function. Garbage collection

can either be done each time we select a state s in line 6 with a higher progress

value than in the previous iteration or every, say, 1000th iteration depending

on how V is implemented. If we create a double representation of V using a

hash table and a priority queue with ϕ as priority, we can perform garbage

collection each time we increase the progress value without an unreasonable

32 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Send ID: 1
Network 1:
Limit: 2
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1: 1
Limit: 1
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1: 1
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2: 1

Send 1Drop 1

Send ID: 1
Network 1: 1, 1
Limit: 0
In Buffer:
Receive ID: 1
Network 2:

Send ID: 1
Network 1:
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2: 1

Send 1Drop 1

Receive 1

Receive 1

Send 1Drop 1

Send ID: 2
Network 1: 1
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2:

Ack 1

Send ID: 2
Network 1:
Limit: 2
In Buffer: 1
Receive ID: 2
Network 2:

Ack 1

Send ID: 2
Network 1: 1, 2
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2:

Send 2

Drop 2

Send ID: 2
Network 1: 2
Limit: 1
In Buffer: 1
Receive ID: 2
Network 2:

Send 2

Drop 2

Drop 1

Send ID: 2
Network 1: 2, 2
Limit: 0
In Buffer: 1
Receive ID: 2
Network 2:

Send ID: 2
Network 1:
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 2
Network 1: 1
Limit: 0
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 2
Network 1: 2
Limit: 0
In Buffer: 1; 2
Receive ID: 3
Network 2: 2

Send ID: 3
Network 1: 1
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2:

Send ID: 3
Network 1:
Limit: 2
In Buffer: 1; 2
Receive ID: 3
Network 2:

Send ID: 3
Network 1: 2
Limit: 1
In Buffer: 1; 2
Receive ID: 3
Network 2:

Drop 1

Drop 2Send 2

Receive 2

Receive 2

Receive 2 Ack 2

Ack 2

Ack 2

Drop 1 Drop 1

Send 2 Drop 2 Drop 2 ��
�2

2

2

3 ���� ��
� ��

Sweep-line

Figure 2.1: The reachability graph of the network protocol with progress values

assigned to each state and a sweep-line drawn between states with progress

values 3 and 4.

penalty in time. If V is just represented as a has table, how often we do garbage

collection needs to be balanced between the cost of traversing all of V against

the additional memory required to store additional states that can safely be

garbage collected.

Algorithm 2 The basic sweep-line method for reachability graph traversal.

Require:

LT S = (S, T,∆, sI) a labelled transition system,

ψ : S → N a progress measure

1: V := {sI}
2: W := {sI}
3: E := ∅
4:

5: while W 6= ∅ do

6: Select an s ∈W s.t. ∀s′ ∈W.ψ(s′) ≥ ψ(s)
7: W := W \ {s}

8: for all t, s′ such that s
t
−→ s′ do

9: E := E ∪ {(s, t, s′)}
10: if s′ /∈ V then

11: V := V ∪ {s′}
12: W := W ∪ {s′}
13: V := {s ∈ V | ∃s′ ∈ W.ψ(s′) ≤ ψ(s)}
14: E := {(s, t, s′) ∈ E | s, s′ ∈ V }
15:

16: return (V,E)

Unfortunately the property that s −→ s′ =⇒ ψ(s) ≤ ψ(s′), i.e., that the

progress measure is monotone does not hold for many interesting systems, such

as reactive systems, unless we choose a trivial progress measure assigning the

same progress value to all reachable states. The trivial progress measure does

not yield any reduction in the number of states stored. To overcome this, the

sweep-line method has been extended by Kristensen and Mailund in [104] to

also handle systems where we may have s −→ s′ ∧ ψ(s) > ψ(s′). Edges satisfying

2.2. Reduction Techniques 33

this property are called regress edges. By traversing the reachability graph

multiple times, each traversal called a sweep, the sweep-line method is able to

cope with regress edges. The idea is to start from the initial state in the first

sweep and in all the following sweeps use the destinations of regress edges

found in the previous sweep as starting points. Furthermore, we never remove

destinations of regress edges from memory. The major advantage of the sweep-

line method is that if the progress measure is good, i.e., if it separates the

reachable states into many equivalence classes and yields few regress edges,

only a fraction of the reachable states are kept in memory at any time. How

to find good progress measures are the topic of much research. As an example

Schmidt [151] use transition invariants of PT-nets to automatically synthesise

efficient progress measures, and Vanit-Anunchai, Billington, and Gallash try

to assist the user in manually obtaining good progress measures by counting

the number of states in each class of states with the same progress value [165].

2.2.2 Hash Compaction

Hash compaction [155,172] introduced by Wolper and Leroy uses a hash func-

tion, H : S → {0, 1}w, to compress states to w bits before they are stored. As

an example, in the network protocol in Fig. 1.8, to represent the state of the

system, we would need 12 integers to store each state of the system (one for

Send ID, Receive ID, and Limit, one to indicate how many packets and two to

specify which packets are on either of Network 1, Network 2, and In Buffer), us-

ing 48 bytes assuming that 32 bits are used to represent each integer. By using

a hash function generating 32 bit hash values, we would only use 32 bits or

4 bytes to store each state. The algorithm for reachability graph analysis us-

ing hash compaction is the same as the algorithm for basic reachability graph

analysis, namely Algorithm 1. The only difference is that the checks in line 10

and the adding of nodes in line 11 are implemented in a different way—this

actually holds for any algorithm which implements a more efficient state rep-

resentation. For hash compaction we would check whether H(s) /∈ V (in line

10) and replace line 11 by V := V ∪ {H(s′)}.

The major caveat of hash compaction is that hash collisions may lead to not

exploring all reachable states, as we may incorrectly conclude that a state s′

has already been visited if we have visited a state s, whose compressed state

descriptor H(s) is equal to the compressed state descriptor of s′, H(s′). Say we

have a hash function assigning hash values h1–h15 to the states of the network

protocol. In Fig. 2.2(a) we have written the hash values assigned to each state

to the upper left of the states. If we assume that the state marked with a

big A inside is discovered before the state marked B, we will believe we have

already seen state B, and not process it further, so the state C will never be

discovered. In fact, the reachability graph as explored using hash compaction

will look like the one in Fig. 2.2(b). If we consider it an error to have received

and acknowledged all packets successfully, yet still have an outstanding copy

of the first packet, analysis using hash compaction would (in this case) not

discover the error as state C is not explored. The hash compaction method

can be improved by using more than one hash function, but the basic problem

persists, namely that the method is incomplete in general. In [T2] we introduce

the ComBack method, which improves hash compaction by adding a means to

discover hash collisions on-the-fly during the traversal, making the method

complete as well as sound.

34 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Send ID: 1������� !
Limit: 2
In B fer:
Re������� " !
Send ID: 1������� !
Limit: 1
In B fer:
Re������� " !

Send ID: 1������� !
Limit:
In B fer: 1
Re������� " !

Send 1Drop 1

Send ID: 1������� ! #
Limit:
In B fer:
Re������� " !

Send ID: 1������� !
Limit: 1
In B fer: 1
Re������� " ! Send 1Drop 1

Re

Re

Send 1Drop 1

Send ID: 2������� !
Limit: 1
In B fer: 1
Re������� " !A

Send ID: 2������� !
Limit: 2
In B fer: 1
Re������� " !A

Send ID: 2������� ! # "
Limit:
In B fer: 1
Re������� " !Send 2

Drop 2

Send ID: 2������� !"
Limit: 1
In B fer: 1
Re������� " !Send 2

Drop 2

Drop 1

Send ID: 2������� !"# "
Limit:
In B fer: 1
Re������� " !

Send ID: 2������� !
Limit: 1
In B fer: 1; 2
Re������� " !"
Send ID: 2������� !
Limit:
In B fer: 1; 2
Re������� " !"
Send ID: 2������� !"
Limit:
In B fer: 1; 2
Re������� " !"

Send ID: 3������� !
Limit: 1
In B fer: 1; 2
Re������� " !
Send ID: 3������� !
Limit: 2
In B fer: 1; 2
Re������� " !
Send ID: 3������� !"
Limit: 1
In B fer: 1; 2
Re������� " !

Drop 1

Drop 2Send 2

Re

Re

Re A

A

A

Drop 1 Drop 1

Send 2 Drop 2 Drop 2 $%&$'
$($&$)$%
$* $+

$%,$-
$. $%

1

$%)$%) $%*
$%(

(a)

Send ID: 1/012345 67
Limit: 2
In B fer:
Re/012345 8 7
Send ID: 1/012345 67 6
Limit: 1
In B fer:
Re/012345 8 7

Send ID: 1/012345 67 6
Limit:
In B fer: 1
Re/012345 8 7 6

Send 1Drop 1

Send ID: 1/012345 67 69 6
Limit:
In B fer:
Re/012345 8 7

Send ID: 1/012345 67
Limit: 1
In B fer: 1
Re/012345 8 7 6Send 1Drop 1

Re

Re

Send 1Drop 1

Send ID: 2/012345 67 6
Limit: 1
In B fer: 1
Re/012345 8 7A

Send ID: 2/012345 67
Limit: 2
In B fer: 1
Re/012345 8 7A

Send ID: 2/012345 67 69 8
Limit:
In B fer: 1
Re/012345 8 7Send 2

Drop 2

Send ID: 2/012345 678
Limit: 1
In B fer: 1
Re/012345 8 7Send 2

Drop 2

Drop 1

Send ID: 2/012345 6789 8
Limit:
In B fer: 1
Re/012345 8 7

Send ID: 2/012345 67
Limit: 1
In B fer: 1; 2
Re/012345 8 78
Send ID: 2/012345 678
Limit:
In B fer: 1; 2
Re/012345 8 78

Send ID: 3/012345 67
Limit: 2
In B fer: 1; 2
Re/012345 8 7
Send ID: 3/012345 678
Limit: 1
In B fer: 1; 2
Re/012345 8 7

Drop 1

Drop 2Send 2

Re

Re

Re

A

A

Send 2 Drop 2 Drop 2 :;<:=
:>:<

:?
:;

:@ :A
:;B:C

:D
:;1:;? :;@

(b)

Figure 2.2: Reachability graphs for the network protocol as seen when using

hash compaction.

2.3 Obtaining Memory-Efficient Reachability

Graph Representations Using the

Sweep-Line Method [T1]

The major disadvantage of the sweep-line method is that at no time during

exploration do we have a complete representation of the entire reachability

graph in memory (unless we use the trivial progress measure assigning the

same progress value to all reachable states, in which case the method yields no

optimisation), so it is only possible to decide invariant properties. If we want

to check more complex properties, such as liveness properties using Linear

Temporal Logic (LTL), we will need a representation of the reachability graph

in memory or the ability to perform depth-first traversal of the reachability

graph as LTL can be checked by calculating strongly connected components of

the reachability graph using, e.g., Tarjan’s algorithm [157], or on-the-fly us-

ing nested depth-first traversal [74] of the reachability graph as described by

Holzmann. Neither of these methods are immediately possible in combination

with the sweep-line method. Tarjan’s algorithm cannot be used as it requires

that we have a representation of the reachability graph in memory (or that we

are able to generate the graph in a depth-first manner), and nested depth-first

2.3. Memory-Efficient Reachability Graph Representations 35

traversal of the graph is not usable as the sweep-line imposes a certain order

of traversal depending on the reachability graph in order to perform well. If

we use the basic sweep-line method it is possible to check LTL as all states in a

strongly connected component will need to have the same progress value. The

basic sweep-line method yields no optimisation for reactive systems, however,

and it may often be possible to devise a better progress measure if we allow a

few regress edges. Our paper [T1] uses the sweep-line method to construct a

near memory-optimal representation of the reachability graph, so we can use

either Tarjan’s algorithm or nested depth-first traversal to check, e.g., liveness

properties.

The most efficient representation of |S| states use ⌈log2 |S|⌉ bits to store each

state2. Often the encoding actually used is not even this efficient, so even more

than the required ⌈log2 |S|⌉ bits are used to store each state. In the network

protocol example, we would use 48 bytes (to represent 12 integers) or 384 bits

to store each state. Only ⌈log2 |reach(sI)|⌉ bits are actually needed to distinguish

between the |reach(sI)| reachable states, however. The idea of [T1] is that the

number of reachable states is often much smaller than the number of syntac-

tically possible states, |reach(sI)| << |S|, so we map representations of states

from S (the full state descriptors) into bit-vectors of size ⌈log2 |reach(sI)|⌉ (the

condensed representation) in a way so that we can later analyse the reachabil-

ity graph. In the network protocol we only need to use ⌈log2 16⌉ = 4 bits for each

state, using only around 1% of the memory used for our naive representation

of each state. This representation is realised by representing each reachable

state as a number 0, . . . , |reach(sI)|− 1, and using a standard successor-list rep-

resentation of the reachability graph. Such numbers have no relation to the

full state descriptor, so we need to keep the full state descriptors as long as

needed to recognise previously seen states. In Fig. 2.3(a) we see the reachabil-

ity graph of the network protocol in Fig. 1.8. We have assigned to all states a

state number, written to the upper right of the state. A successor-list represen-

tation of the reachability graph can be seen in Fig. 2.3(b). For each node we

store a pointer to a list of all successors. The list is preceded by the number

of successors, and contains a list of pairs with the transition and the number

of the state it leads to. As an example, we can see that the state with number

1 has 3 successors. One successor is reached by executing Drop 1 and leads

to state number 0, and the other successors are reached by executing Send 1
leading to state number 2 respectively executing Receive 1 to state number 3.

If we assume that the transition relation is deterministic, i.e., if s
t
−→ s′

and s
t
−→ s′′ then s′ = s′′, this structure can be traversed using Algorithm 3.

The idea is to traverse the graph according to the condensed representation

(the numbers), and calculate the full state descriptors during traversal us-

ing the transition information. We use the fact that the transition relation

is deterministic to calculate the successors in line 10 of the algorithm. It is

easy to change Algorithm 3 to check Computation Tree Logic (CTL) as in [27,

Sect. 4.1] by adding a table of sub-expressions of the formula to check, indexed

by 0, . . . , ⌈log2 |reach(sI)|⌉ − 1 so it is possible to calculate a fix-point of satis-

fied formulae in each state. We can also extend the algorithm to use nested

depth-first search [74], so it can be adapted to check Linear Temporal Logic

(LTL).

One problem is, of course, to recognise when a full state descriptor is no

longer needed, i.e., when we will never encounter it again. We use the sweep-

line to delete full state descriptors from memory when they are no longer

needed. Another problem is that when we start the generation we do not know

2Assuming that |S| < ∞; if |S| = ∞ we would use a variable-length encoding.

36 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Send ID: 1EFGHIJK LM
Limit: 2
In B fer:
ReEFGHIJK N M
Send ID: 1EFGHIJK LM L
Limit: 1
In B fer:
ReEFGHIJK N M

Send ID: 1EFGHIJK LM L
Limit:
In B fer: 1
ReEFGHIJK N M L

Send 1Drop 1

Send ID: 1EFGHIJK LM LO L
Limit:
In B fer:
ReEFGHIJK N M

Send ID: 1EFGHIJK LM
Limit: 1
In B fer: 1
ReEFGHIJK N M LSend 1Drop 1

Re

Re

Send 1Drop 1

Send ID: 2EFGHIJK LM L
Limit: 1
In B fer: 1
ReEFGHIJK N MA

Send ID: 2EFGHIJK LM
Limit: 2
In B fer: 1
ReEFGHIJK N MA

Send ID: 2EFGHIJK LM LON
Limit:
In B fer: 1
ReEFGHIJK N MSend 2

Drop 2

Send ID: 2EFGHIJK LMN
Limit: 1
In B fer: 1
ReEFGHIJK N MSend 2

Drop 2

Drop 1

Send ID: 2EFGHIJK LMN ON
Limit:
In B fer: 1
ReEFGHIJK N M

Send ID: 2EFGHIJK LM
Limit: 1
In B fer: 1; 2
ReEFGHIJK N MN
Send ID: 2EFGHIJK LM L
Limit:
In B fer: 1; 2
ReEFGHIJK N MN
Send ID: 2EFGHIJK LMN
Limit:
In B fer: 1; 2
ReEFGHIJK N MN

Send ID: 3EFGHIJK LM L
Limit: 1
In B fer: 1; 2
ReEFGHIJK N M
Send ID: 3EFGHIJK LM
Limit: 2
In B fer: 1; 2
ReEFGHIJK N M
Send ID: 3EFGHIJK LMN
Limit: 1
In B fer: 1; 2
ReEFGHIJK N M

Drop 1

Drop 2Send 2

Re

Re

Re A

A

A

Drop 1 Drop 1

Send 2 Drop 2 Drop 2

159

42

1P 3 Q
RS

T
12

10

11

1

1

(a)

E[0]

E[1]

E[2]

E[3]

E[4]

E[5]

E[6]

E[7]

E[8]

E[9]

E[10]

E[11]

E[12]

E[13]

E[14]

E[15]

1 # (Send 1, 1)

3 # (Drop 1, 0); (Send 1, 2); (Receive 1, 3)

2 # (Drop 1, 1); (Receive 1, 4)

2 # (Send 1, 4); (Ack 1, 5)

2 # (Drop 1, 3); (Ack 1, 6)

1 # (Send 2, 7)

2 # (Drop 1, 5); (Send 2, 8)

2 # (Send 2, 9); (Receive 2, 10)

2 # (Drop 1, 7); (Receive 2, 11)

2 # (Drop 2, 7); (Receive 2, 12)

2 # (Send 2, 12); (Ack 2, 13)

2 # (Drop 1, 10); (Ack 2, 14)

2 # (Drop 2, 10); (Ack 2, 15)

1 # (Drop 1, 13)

1 # (Drop 2, 13)

(b)

E[0]

E[1]

E[2]

E[3]

E[4]

E[5]

E[6]

E[7]

E[8]

E[9]

E[10]

E[11]

E[12]

E[13]

E[14]

E[15]

1, 1 # (Send 1, 1)

3, 2 # (Drop 1, 0); (Send 1, 2); (Receive 1, 3)

2, 3 # (Drop 1, 1); (Receive 1, 4)

2, 3 # (Send 1, 4); (Ack 1, 5)

2, 3 # (Drop 1, 3); (Ack 1, 6)

1, 3 # (Send 2, 7)

2, 4 # (Drop 1, 5); (Send 2, 8)

2, 4 # (Send 2, 9); (Receive 2, 10)

2, 4 # (Drop 1, 7); (Receive 2, 11)

2, 4 # (Drop 2, 7); (Receive 2, 12)

2, 4 # (Send 2, 12); (Ack 2, 13)

2, 4 # (Drop 1, 10); (Ack 2, 14)

2, 4 # (Drop 2, 10); (Ack 2, 15)

1, 4 # (Drop 1, 13)

1, 4 # (Drop 2, 13)

(c)

Figure 2.3: The reachability graph of the network protocol with progress values

assigned (a) and two successor-list representations of the graph (b) and (c).

|reach(sI)|, so we do not know how many bits to use for each state. To circum-

vent this problem, we simply use as many bits as required to store all succes-

sors (which is known at the time we store successors) and store this length as

well.

The algorithm works by defining a function idxM : S → {0, . . . , |reach(sI)| −
1}, mapping full state descriptors to state numbers. This function can, e.g., be

implemented as a hash table. Whenever we encounter a new state we assign

it a new state number and add it to idxM . Consider, e.g., Fig. 2.3(a). If we are

exploring state 1 and the state 0 is already in idxM , we will encounter two new

states, which we assign numbers 2 and 3. As we assign numbers to states when

they are first discovered, we will always know the maximum state number of

all successors when processing a state. In the case of state 1, this number is 3,

so by using ⌈log2 3⌉ = 2 bits, we can store all successors of state 1. The structure

in Fig. 2.3(c) shows how we can represent the reachability graph by extending

the header to also include how many bits are used to store each successor state.

As an example we see that state number 1 has 3 successors, each represented

using 2 bits. One of the states is reached by the transition Drop 0 and has

number 0. When we have processed state 2 and move on to state 3, we notice

2.4. The ComBack Method—Extending Hash Compaction 37

Algorithm 3 Depth-first traversal of the condensed reachability graph

Require: E a successor-list representation of a reachability graph

1: V := ∅
2: DEPTHFIRSTTRAVERSAL(0, sI)
3:

4: proc DEPTHFIRSTTRAVERSAL(i, s) is

5: if i ∈ V then

6: return

7: {analyse s here}
8: V := V ∪ {i}
9: for all (t, i′) in E[i] do

10: Let s′ be such that s
t
−→ s′

11: DEPTHFIRSTTRAVERSAL(i′, s′)

that there is no need to store the idxM mapping for states 0 to 2 as we will never

encounter them again. We know that because we can look at the reachability

graph in Fig. 2.3(a), but using the sweep-line method, the algorithm is also

able to realise that, as state 3 has progress value 4 (using the same progress

measure as in Fig. 2.1, namely the sum of Send ID and Receive ID) and the

states 0 to 2 have progress value 3. We therefore remove the mapping of the

full state descriptors of states 0–2 from idxM and proceed calculating successors

of state 3 and assigning them state numbers. If the progress measure is not

monotone, it is possible that we delete a full state descriptor from idxM before

we are done using it. This will lead to the state being assigned a new number,

so the reachability graph constructed using this algorithm may actually be

an unfolding of the original reachability graph. The unfolding is shown to be

bisimilar [124] to the original reachability graph by Mailund in [118, Chap.

13], so CTL* and in particular LTL and CTL is preserved as shown by Clarke,

Grumberg, and Peled in [27, Chap. 12]. The full algorithm can be seen in

Fig. 5.3 on page 86.

2.4 The ComBack Method—Extending Hash

Compaction with Backtracking [T2]

As can be seen in Fig. 2.2, the hash compaction reduction method may lead

to not exploring all reachable states if there exist two states, s 6= s′, with the

same compressed state descriptor, H(s) = H(s′), as is the case with states

A and B in Fig. 2.2(a). The ComBack method circumvents this by storing

enough information that we are able to realise that the states s and s′ are

actually different even though H(s) = H(s′). Like the method in the previ-

ously discussed paper [T1], we will represent each state as integers, in this

case 1, . . . , |reach(sI)|. Furthermore, we use a hash function H to generate com-

pressed state descriptors for each state. In Fig. 2.4(a) we have shown the reach-

ability graph of the network protocol from Fig. 1.8 and assigned each state a

number 1, . . . , |reach(sI)| and a compressed state descriptor h1, . . . , h15. Addi-

tionally, we have assigned each state a name, s1—s11, A, B, and C, to have a

brief way of referring to the full state descriptor of each state. As an example,

we see that the states A and B have the same compressed state descriptor, h12.

For the sake of the description of the method, we will assume that the transi-

tion relation given is deterministic, i.e., that if s
t
−→ s′ and s

t
−→ s′′ then s′ = s′′.

38 Chapter 2. Behavioural Verification by Means of Reachability Graphs

Send ID: 1UVWXYZ[\]
Limit: 2
In B fer:
ReUVWXYZ[^]
Send ID: 1UVWXYZ[\] \
Limit: 1
In B fer:
ReUVWXYZ[^]

Send ID: 1UVWXYZ[\] \
Limit:
In B fer: 1
ReUVWXYZ[^] \

Send 1Drop 1

Send ID: 1UVWXYZ[\] _ \
Limit:
In B fer:
ReUVWXYZ[^]

Send ID: 1UVWXYZ[\]
Limit: 1
In B fer: 1
ReUVWXYZ[^] \Send 1Drop 1

Re

Re

Send 1Drop 1

Send ID: 2UVWXYZ[\] \
Limit: 1
In B fer: 1
ReUVWXYZ[^]A

Send ID: 2UVWXYZ[\]
Limit: 2
In B fer: 1
ReUVWXYZ[^]A

Send ID: 2UVWXYZ[\] _ ^
Limit:
In B fer: 1
ReUVWXYZ[^]Send 2

Drop 2

Send ID: 2UVWXYZ[\]^
Limit: 1
In B fer: 1
ReUVWXYZ[^]Send 2

Drop 2

Drop 1

Send ID: 2UVWXYZ[\]^_ ^
Limit:
In B fer: 1
ReUVWXYZ[^]

Send ID: 2UVWXYZ[\]
Limit: 1
In B fer: 1; 2
ReUVWXYZ[^]^
Send ID: 2UVWXYZ[\] \
Limit:
In B fer: 1; 2
ReUVWXYZ[^]^
Send ID: 2UVWXYZ[\]^
Limit:
In B fer: 1; 2
ReUVWXYZ[^]^

Send ID: 3UVWXYZ[\] \
Limit: 1
In B fer: 1; 2
ReUVWXYZ[^]
Send ID: 3UVWXYZ[\]
Limit: 2
In B fer: 1; 2
ReUVWXYZ[^]
Send ID: 3UVWXYZ[\]^
Limit: 1
In B fer: 1; 2
ReUVWXYZ[^]

Drop 1

Drop 2Send 2

Re

Re

Re A

A

A

Drop 1 Drop 1

Send 2 Drop 2 Drop 2 `ab`c
`d`b`èa
`f `g

`ah`i
`j `a

1

`ae`ae `af
`ad

9

8

7j5fb
2

1 1

15

1

1

12

11

10

(a)kl
h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

h15

1

2

3

4

5

6

7

10

8

9

13

11, 12

16

14

15

(b) State table

1m
3

4

5

6

7

8

9

10

11

12

13

14

15

1, Send 1

2, Send 1

2, Receive 1

3, Receive 1

4, Ack 1

5, Ack 1

6, Send 2

7, Send 2

8, Send 2

8, Receive 2

9, Receive 2

10, Receive 2

11, Ack 2

12, Ack 2

16 13, Ack 2

(c) Backedge table

Figure 2.4: The reachability graph of the network protocol with compressed

state descriptors and state numbers (a), the state table (b) and the backedge

table (c) used to represent the reachability graph using the ComBack method.

The method can be extended to also deal with non-deterministic transition re-

lations; for more details refer to Sect. 6.5 on page 103.

The ComBack method works by storing a mapping from compressed state

descriptors to state numbers, called a state table, which maps a compressed

state descriptor into all encountered state numbers with the corresponding

compressed state descriptor. The state mapping for the reachability graph of

the network protocol can be seen in Fig. 2.4(b). Furthermore we maintain a

spanning tree from the initial state to all explored states by storing, for each

state number n′ corresponding to a state s′, the number, n of a predecessor

state s and a transition t such that s
t
−→ s′. This information is stored in a

data-structure called the backedge table. A possible backedge table for the

reachability graph of the simple network protocol can be seen in Fig. 2.4(c).

Here we see, e.g., that state number 2 can be reached from state number 1 via

the transition Send 1.

Using the backedge table it is possible to reconstruct the full state descrip-

tor for each state number. Say we want to reconstruct the full state descriptor

for the state with number 11. We look up state number 11 in the backedge

2.5. Contribution and Future Work 39

table and obtain 8, Receive 2, meaning we must take a Receive 2 transition

from the state with number 8 to reach the state with number 11. We now

look up state number 8, and get 6, Send 2. We continue and obtain (4, Ack
1), (2, Receive 1), (1, Send 1). The state with number 1 is the initial state.

We can see this as it has no backedges. Now we must execute the transition

sequence we have obtained from the initial state in the reverse order, and get

sI
Send 1
−−−−→ s1

Receive 1
−−−−−−→ s3

Ack 1
−−−−→ s5

Send 2
−−−−→ s8

Receive 2
−−−−−−→ A, which is indeed the

state with state number 11. We can thus backtrack from any given state num-

ber to the initial state and execute all the transitions stored in the backedge

table to obtain the full state descriptor corresponding to the state number.

The state table and the backedge table are created as we explore the reacha-

bility graph. Whenever we encounter a state, s′, using the transition s
t
−→ s′, we

calculate its compressed state descriptor, H(s′), and look up all state numbers

corresponding to that compressed state descriptor in the state table. If no such

state numbers exist, we just assign the state a new number and add it to the

state table and the backedge table. If there are any such state numbers in the

state table, we use the aforementioned technique to re-generate the full state

descriptors for each of the numbers. These can then be compared with the full

state descriptor of s′. If any of the full state descriptors are equal to s′, we have

already encountered s′, and do not need to proceed. Otherwise we just assign

s′ a new state number and add it to the state table and the backedge table. All

we need to know to add a state to the state table and the backedge table is the

number of a predecessor and a transition from the predecessor as well as the

highest used state number. The entire algorithm can be seen in Algorithm 5 on

page 100.

In addition to the basic algorithm, a number of variants are given in [T2].

One variant is able to also handle non-deterministic transition relations. This

variation also makes it possible to only store the number of a predecessor state

in the backedge table and omitting the transition information, yielding a mem-

ory optimisation at a cost in time. Time-saving variants include shortening of

how long we need to backtrack for each state. The lengths of backtracks depend

on the traversal policy—in the example we have used a breadth-first traversal

yielding optimal backtracks, but if we had used, e.g., depth-first traversal, the

backtracks might not be optimal, so shortening backtracks would reduce the

time required to reconstruct full state descriptors. Another time-saving variant

simply caches some full state descriptors, thus spending a little more memory

for increased performance.

2.5 Contribution and Future Work

In this chapter we have taken a look at behavioural verification of formal

models including symbolic methods and four categories of explicit reachabil-

ity graph analysis. We have in particular looked at the existing sweep-line

and hash compaction reduction techniques and how our papers have improved

upon these methods. In this section, we sum up the contributions made in this

field and provide directions for future research.

Our first presented paper, [T1], improves upon the sweep-line reduction

technique by using the sweep-line method to construct a near-optimal repre-

sentation of the reachability graph. This representation makes it possible to

use the sweep-line method to check properties that are more complex than

invariant properties, e.g., liveness properties in LTL. The algorithm is evalu-

ated on a number of examples in [T1]. Unsurprisingly, the algorithm works

40 Chapter 2. Behavioural Verification by Means of Reachability Graphs

best when the sweep-line method does, i.e., on reachability graphs with a clear

notion of progress. One such example is an extended version of the network

protocol in Fig. 1.8, where 5–10% of the memory required to construct the full

reachability graph is used, and 25–130% of the time is spent. If we consider

a model of the dining philosophers problem, it is possible to define a progress

measure which separates the reachable states into a lot of classes and only

yields few regress edges. Using the number of eating philosophers as progress

value, we will store almost all states during the construction, so the memory

used for the compact representation is overhead. Compared to the amount of

memory used for the full state descriptors, this is negligible, however, and the

only real disadvantage is the extra time is spent during construction.

Our second presented paper, [T2], makes the hash compaction reduction

technique complete by storing, in addition to a compressed state descriptor, a

spanning tree rooted in the initial state. This extra information makes it is

possible to resolve hash collisions on-the-fly by reconstructing the full state de-

scriptor when we encounter states with a compressed state descriptor already

stored. The paper compares the ComBack algorithm to other algorithms that

minimise the amount of memory used to store states, and find that the Com-

Back method naturally uses more memory than hash compaction, but on the

other hand guarantees that all reachable states are explored. The method uses

less memory than storing the full state descriptors, and uses around twice as

long time. On the other hand, thanks to the lower memory consumption, the

method is able to explore reachability graphs that are impossible to explore

using the basic algorithm.

In [49] Evangelista and Pradat-Peyre introduce an approach similar to the

ComBack method. The method also stores states as pairs of a predecessor and

a transition but, compared to the ComBack method, the compressed state de-

scriptor is not stored, and state numbers are merely inserted into a hash table,

which can lead to many more reconstructions. Furthermore, [49] has strati-

fied caching [56] built into the algorithm, which makes it less flexible unless

we first factor out the caching mechanism, as is done by the ComBack method.

In [49] stratified caching with a maximum parameter of 50 is used. This means

that a backtrack has length at most 50 and corresponds to caching 2% of the

full state descriptors, makes the algorithm use 200% − 400% of the time used

for a basic exploration of the reachability graph. The ComBack method use

a simpler caching strategy, namely inserting the mapping from compressed

state descriptors to full descriptors into a hash table that does not handle col-

lisions. Using this caching strategy we are able to obtain comparable time re-

sults using a cache of only 0.1%–1% of all the states, or approximately 20 times

smaller than the cache used in [49]. Furthermore, [49] presents the algorithm

solely as a depth-first traversal, whereas the ComBack method is presented in

a traversal-independent manner, making the ComBack method easier to com-

bine with other methods. Also, our experimental results show that breadth-

first traversal of the reachability graph may be much faster for highly reactive

systems where most of the reachability graph end up on the recursion stack.

2.5.1 Future Work

While prototype implementations of the two methods described in this chapter

have shown promising performance, neither method has been used extensively

in practise. The reason is that one of the methods, the ComBack method [T2],

has only recently been published at the time of writing. The other method, the

extended version of the sweep-line method [T1], is mainly useful for checking

more complex properties, such as liveness using Linear Temporal Logic, and

2.5. Contribution and Future Work 41

this does not have easy accessible tool support in tools supporting the algo-

rithm, making real-life applications difficult. In this section we will provide

some directions for interesting future work, including some ideas on how to

alleviate these problems.

Use the ComBack method in conjunction with other reduction

techniques

As mentioned, a strong point of the ComBack method is that it is independent

of the traversal type, making it easily adaptable to tasks such as on-the-fly

verification of LTL using nested depth-first traversal or CTL model-checking

using backwards fix-point calculation. This makes the algorithm well-suited

for analysis, and it also makes it easy to combine the algorithm with other

reduction techniques, which may impose a certain traversal order. Here it is

in particular interesting to combine the method with partial order reduction

techniques, which reduce the in-degree of nodes (as high in-degrees often oc-

cur when executing concurrent transitions), thereby reducing the number of

reconstructions required.

It is also interesting to combine the ComBack method with the sweep-line

method. As stated earlier, the sweep-line method and the method for obtain-

ing an efficient reachability graph representation described in Sect. 2.3 work

well for reachability graph with a clear notion of progress. We can call such

reachability graphs “long”, because they often consists of a few long execution

traces only. The ComBack method described in Sect. 2.4 works well for “wide”

reachability graphs where the graph consists of many short execution traces

with little interaction. The sweep-line based method only conserves memory if

the progress measure makes it possible to often remove full state descriptors,

but the method uses extra time whenever a regress edge leads to an already

discovered state because of rediscovery. The ComBack method uses long time

reconstructing already visited states, but benefits greatly from a cache map-

ping compressed state descriptors to full state descriptors. We have only ex-

perimented with very simple caching strategies, and our own research as well

as that of Evangelista and Pradat-Peyre [49] indicate that the method is very

sensitive to caching strategy in terms of how much time is spent. One way

to obtain a caching strategy that intuitively should perform well is to use the

sweep-line method to define the caching strategy, and cache full state descrip-

tors in front of the sweep-line. Another way to view this combination is that we

utilise the ComBack method to test whether destinations of regress edges lead

to new or to already discovered states during a run of the sweep-line method.

We observe that the successor-list representation of the reachability graph cre-

ated in our paper [T1] looks very similar to the backedge table of the ComBack

method (compare Fig. 2.3(c) with Fig. 2.4(c)). The successor-list representa-

tion stores successors and the backedge table stores a predecessor for each

state. Both of the tables rely on state numbers. If we extend the successor-list

of the sweep-line based method with a predecessor like in the backedge table

and introduce a state table like in the ComBack method, we are able to cope

with regress edges by, rather than just concluding that they are regress edges

and processing them in the next sweep, checking whether we have already en-

countered the state (by checking the state table and reconstructing states as

necessary), and, if the state is new, either schedule it for later processing or

process it immediately. As we use the sweep-line method to represent all full

state descriptors in front of the sweep-line, we only need to reconstruct destina-

tions of regress edges during the first sweep. As we are able to check whether

the destination of a regress edge leads back to a previously unvisited state or

42 Chapter 2. Behavioural Verification by Means of Reachability Graphs

a completely new state, we never need to reconstruct parts of the reachability

graph, which was the major caveat of the sweep-line based algorithm. The com-

bined method should therefore be able to analyse systems which only exhibit

limited progress, as regress edges no longer lead to a blowup in spent time.

Devise more usable specification language for properties of coloured

Petri nets

As mentioned, the new method described in Sect. 2.3 has not been tested ex-

tensively due to the lack of reasonable tool support. The current tool, CPN

Tools, provides provisional support for checking CTL and support for checking

LTL on-the-fly has been experimentally implemented for coloured Petri nets

in DESIGN/CPN [37] by Mikkelsen [122] and by the author of this thesis in a

model-checker implemented in the BRITNeY Suite. All of these implementa-

tions use a textual syntax for describing the temporal formulae and use Stan-

dard ML predicates applied to a representation of the state of the model as

atomic propositions. This has the disadvantage of requiring that the user is

familiar with the complexities of temporal logics and the difficulty of writing

often complex predicate functions.

Rather than inventing a new language for specifying properties, one can

also just use the modelling formalism itself to specify properties. This has

been done in SPIN [77], where properties are stated as so-called never-claims,

which is a standard process in the native PROMELA language of SPIN. If the

never-claim reaches a final state, it is considered an error. Something similar

has been proposed by Petri [139] for Petri nets. Here we add special tran-

sitions, called facts, which must never be enabled. We could do something

similar for CP-nets by introducing a module containing a place which must

never be marked and/or a transition which must never be executed. CP-nets

currently have tool support for synchronisation of modules by means of shared

places, but support can dually be added for synchronisation by means of shared

transitions. Using this it would be possible to create a module representing a

scenario which must never happen.

It is also possible to try to define atomic propositions in a simpler way. This

idea is partially inspired by Cardelli and Gordon’s ambient logic [16] where

atomic propositions are stated in a language closely resembling the language

of the ambient calculus [17]. For coloured Petri nets something similar could,

e.g., be achieved by showing the user a copy of the net/a module of the net.

Tokens can then be assigned to places of interest to signify that these tokens

must be present on the place in a state for the atomic proposition to hold. For

example, in the case of the network protocol in Fig. 1.8, we may want to check if

the token [(2, ” model”), (1, ”Formal”)] can ever be present on In Buffer, signifying

that the packets have arrived out of order.

Finally, we may want to specify temporal properties in simpler ways than

by using a logic. We can, e.g., specify temporal properties using message se-

quence charts [67] as message sequence charts basically define a partial or-

dering of events. By annotating message sequence charts with atomic propo-

sitions, which must hold between events, users would be able to easily specify

even complex temporal properties.

Create test-suite and tools for improvement of reachability graph

analysis methods

As can be seen in Table 6.1 on page 107, re-printed from [T2], a lot of experi-

ments have been run in order to validate the usefulness of the ComBack algo-

2.5. Contribution and Future Work 43

rithm. The results shown only comprise a small fraction of the total number of

experiments, and it is not desirable to have to run these experiments manually.

In [133], Pelánek state that reachability graphs basically come in three vari-

ants: random graphs, reachability graphs generated by small academic exam-

ples, and reachability graphs generated by realistic/real-life models. Graph-

theoretic properties varies for each kind of graph. Often the performance of

reduction techniques varies hugely dependent on the structural properties of

the reachability graph. For example, the ComBack method works best if the

in-degree is small so only few states are reconstructed. This demonstrates that

it is important to test methods on several different kinds of models, prefer-

ably both academic examples, like the dining philosophers, as well as real-life

models.

Furthermore, we would also like to be able to compare results of tests with

known good results and compare the execution time and memory consump-

tion as time progresses and the implementation is improved. Both to compare

different implementations of the same reduction technique and to compare dif-

ferent reduction techniques.

This implies that we would like a test-suite and supporting tools, which pro-

vide a means to automatically run several reachability graph analysis tasks

and which preferably provide a means to easily specify such tasks. The test-

suite should consist of several formal models, both simple academic examples

and real-life models. It should be possible to store results of executions, com-

pare each result to known-good values, and enable exploration of the execution

time/memory consumption for different reduction techniques and different im-

plementations.

One such test-suite is being developed within the ASCoVeCo (Advanced

State Space Methods and Computer tools for Verification of Communication

Protocols) project [3] at the University of Aarhus. The author of this thesis

participates in this project and has contributed to the development of the test-

suite and tools for running tests.

Improve memory handling

As can be seen in Table 6.1 on page 107, while the ComBack method conserves

memory, it uses significantly more than the expected limit of 5 words (20 bytes

when a machine word is 32 bits) per state (obtained from Theorem 6.1 on page

103 by using a machine word for each of the mentioned numbers). The theo-

rem does not account for memory used for the state table and backedge table,

which will in fact use 2 extra machine words for each state (if implemented as

an dynamically extensible array). The state table will also use 2 extra machine

words for each state. This yields a total of 9 machine words or 36 bytes for each

state, assuming a 32 bit architecture. Yet the best result obtained in Table 6.1

is that 82 bytes is used per state, or more than twice the expected amount of

memory required. This is primarily due to the fact that the algorithm is im-

plemented in Standard ML. While Standard ML is a very nice language for

specifying algorithms, it is not well-tailored to fine-grained control of memory

use. In particular it usually stores a pointer in addition to the data we are

interested in, doubling memory used when we primarily store machine words.

By implementing the data-structures in C++ and keeping the algorithm imple-

mentation in Standard ML, it would be possible to maintain a nice declarative

way to describe algorithms, while using a low-level language to use fine-grained

control of memory consumption.

Implementing data-structures in a low-level language would also make it

possible to implement the condensed representation of [T1] more efficiently.

44 Chapter 2. Behavioural Verification by Means of Reachability Graphs

The current implementation uses a machine word to store each state number,

even though the algorithm facilitates using only the number of bits required. A

similar trick could be done with the ComBack method from [T2] by, e.g., observ-

ing that we know that the number of bits required to store all predecessors of

state number 2n is only n as the predecessor will have a lower number (unless

we make path optimisations). This allows us to drastically reduce the amount

of memory needed to store the backedge table. We can also use Geldenhuys and

Valmari’s very tight hashing [57] to represent the state table of the ComBack

algorithm more efficiently. All of these optimisations are not feasible when the

data structures are implemented in Standard ML, as it is very expensive to

pack and unpack data in order to store data that is not word aligned in Stan-

dard ML.

Visualisation of error traces for property violations

The BRITNeY Suite [T3, C2], which is described in the next chapter, supports

visualisation of traces to violations of invariant properties and liveness proper-

ties formulated using LTL by means of simple message sequence charts. Such

violations are quite easy to visualise, as a violation of an invariant property can

be proved by providing a trace from the initial state to a state not satisfying the

invariant. Violations of LTL properties are rather simple to visualise as well,

as they can be proved by providing a trace to a loop not satisfying the property.

The latter can be visualised by two message sequence charts, one showing the

trace to the loop, and one showing the loop.

Violations of properties formulated using CTL are more complex, however.

The reason is that a proof of a violation is an annotated version of the reacha-

bility graph. Such a proof can of course visualised as a huge graphical graph,

but as soon as the graph contains more than a few dozen nodes, this becomes

impractical. Instead, we propose another way to convince users that properties

hold/do not hold. The idea is that if the users need convincing that the formula

does not hold, it is because he thinks it does hold. In Sect. 3.5 we provide more

details of how this could be done by letting a user try to prove sub-formulae of

the system by choosing some transitions and letting the computer choose other

transitions in a way such that it is impossible for the user to ever arrive at a

proof of the property.

Chapter 3

Behavioural Visualisation of Formal

Models

Until now, we have considered the model in Fig. 1.5 as an example of a coloured

Petri net. That is not really true. In fact, according to the ISO standard for

Petri nets [87], a coloured Petri net (in the standard called a high-level Petri

net) is a septuple of types, places, transitions, a type function assigning types

to places and transitions, backward and forward incidence functions indicating

how many tokens are consumed respectively produced when each transition is

executed, and an initial marking. Using this definition and renaming places to

P1–P6 and transitions to T1–T4 to keep the figure more compact, the network

protocol in Fig. 1.5 would look like the tuple in Fig. 3.1. In fact the tuple in

Fig. 3.1 only shows the system in the initial state. To also show the dynamic

behaviour of the protocol, we would need to give a mapping like the initial

marking (the last element of the tuple) for each state encountered. Obviously

the description in Fig. 1.5 is much more readable than the one in Fig. 3.1, which

is exactly why the graphical notation in Fig. 1.5 was invented and is being used

in practise.

The formal description is important when reasoning about the formalism,

e.g., when proving that some extension is just syntactic as is, e.g., the case for

Christensen and Hansen’s synchronous channels [22]. When we want to create

the model or explore it using simulation, we do not need the formal definition

explicitly, and will prefer the graphical notation instead as it makes the be-

haviour of the system much clearer. In Fig. 3.2 we see three different layers

of formal models; the mathematical model in Fig. 3.1 is located in the bottom

layer and is used by developers of the formalism. This layer is used to rea-

son about the formalism and to develop analysis methods which works on all

concrete models. The layer above it, the middle layer, is represented by the

graphical model in Fig. 1.5. It consists of concrete models, and is primarily

used by the formal methods expert, who focuses on creating formal models.

The graphical model shows all places as ellipses and all transitions as rectan-

gles. The type of places is shown next to the place as is the initial marking.

The backward and forward incidence functions are shown as arcs from places

to transitions (in the case of the backwards incidence function) and arcs from

transitions to places (for the forward incidence function) and the right-hand

side of the lambda-expression corresponding to the arc is shown near the arc

if it is not the empty multi-set. The top layer, the visualisation, is used pri-

marily by a domain expert to validate that the formal model corresponds to the

intended system. This is the job of a domain expert, as he has extensive knowl-

edge of the domain of the model, while the formal methods expert will seldom

45

46 Chapter 3. Behavioural Visualisation of Formal Models

({ ID, PACKET, PACKETS, PACKETxPACKETS },

{ P1, P2, P3, P4, P5, P6 },

{ T1, T2, T3, T4 },

{ P1 7→ PACKET, P2 7→ ID, P3 7→ PACKET,

P4 7→ PACKET, P5 7→ ID, P6 7→ PACKETS,

T1 7→ PACKET, T2 7→ PACKET, T3 7→ PACKET,

T4 7→ PACKETxPACKETS },

{ (P1, T1) 7→ λx.1‘x, (P1, T2) 7→ λx.∅, (P1, T3) 7→ λx.∅,

(P1, T4) 7→ λx.∅, (P2, T1) 7→ λ(x, y).1‘x, (P1, T2) 7→ λx.∅,

(P2, T3) 7→ λx.∅, (P2, T4) 7→ λ(x, y).1‘x, (P3, T1) 7→ λx.∅,

(P3, T2) 7→ λx.1‘x, (P3, T3) 7→ λ(x, y).1‘x, (P3, T4) 7→ λx.∅,

(P4, T1) 7→ λx.∅, (P4, T2) 7→ λx.∅, (P4, T3) 7→ λx.∅,

(P4, T4) 7→ λx.1‘x, (P5, T1) 7→ λx.∅, (P5, T2) 7→ λx.∅,

(P5, T3) 7→ λ((x, y), z).1‘x, (P5, T4) 7→ λx.∅, (P6, T1) 7→ λx.∅,

(P6, T2) 7→ λx.∅, (P6, T3) 7→ λ(x, y).1‘y, (P6, T4) 7→ λx.∅ },

{ (P1, T1) 7→ λx.1‘x, (P1, T2) 7→ λx.∅, (P1, T3) 7→ λx.∅},

(P1, T4) 7→ λx.∅, (P2, T1) 7→ λ(x, y).1‘x, (P1, T2) 7→ λx.∅,

(P2, T3) 7→ λx.∅, (P2, T4) 7→ λ(x, y).1‘(x + 1), (P3, T1) 7→ λx.1‘x,

(P3, T2) 7→ λx.∅, (P3, T3) 7→ λx.∅, (P3, T4) 7→ λx.∅,

(P4, T1) 7→ λx.∅, (P4, T2) 7→ λx.∅, (P4, T3) 7→ λ((x, y), z).1‘(x, ””),

(P4, T4) 7→ λx.∅, (P5, T1) 7→ λx.∅, (P5, T2) 7→ λx.∅

(P5, T3) 7→ λ((x, y), z).1‘(x + 1), (P5, T4) 7→ λx.∅, (P6, T1) 7→ λx.∅,

(P6, T2) 7→ λx.∅, (P6, T3) 7→ λ(x, y).y ∧ ∧x, (P6, T4) 7→ λx.∅ },

{ P1 7→ 1‘(1, ”Formal”) + +1‘(2, ” model”), P2 7→ 1‘1,

P3 7→ ∅, P4 7→ ∅, P5 7→ 1‘1, P6 7→ 1‘[] })

Figure 3.1: The network protocol from Fig. 1.5 as it looks using the formal

definition of [87].

know enough about the domain to validate all details of the model. While the

graphical representation in Fig. 1.5 is easier to read for coloured Petri nets ex-

perts, it is not that intuitive for other people, and it may not be evident to a

network engineer that the model in Fig. 1.5 actually is a network protocol. The

problem only gets worse if the model is larger or the domain expert knows even

less about formal models, for example if the domain expert is a nurse. We can

then use the method in Fig. 1.3 to construct a graphical model from the speci-

fication and let the domain expert validate that the formal model corresponds

to the specification using the visualisation.

Relating the Model-View-Controller (MVC) [100] design pattern [54] from

Fig. 1.10 to the 3 layers of use of formal models shown in Fig. 3.2, we can think

of the lowest level, the mathematical model, as the model (in MVC terms) of the

system. We can think of the graphical model as the view. A tool implementing

simulation of a formal model will have an internal representation correspond-

ing to the formal definition, as this is required to implement the correct seman-

tics of the modelling language. It may have a graphical user interface which

3.1. Approaches to Visualisation 47

!"#$%&"#%'"()

*+%,-".%&/
0(12&

3(0%")/24,2+'

5(+0%&/
02'-(1#/24,2+'

5(+0%&"#0/
1262&(,2+

7%'-20%'".%&/
0(12&

Layer 1

Layer 2

Layer 3

Representation Used by

Figure 3.2: Three layers of use of formal models.

allows the user to manipulate the formal model using the graphical model layer

of Fig. 3.2. The controller allows the modeller to modify the model (thereby in-

crementally building the desired model) and to simulate the model. The basic

idea of most visualisation tools is that we add a new view on the model. The

view will often be more simplistic than the graphical representation of the un-

derlying formal model, the graphical model. Some tools will even allow the

user to manipulate the execution of the model.

The rest of this chapter is structured as follows: In Sect. 3.1 we will give a

brief survey of different visualisation tools aimed at various formalisms. Sec-

tions 3.2 to 3.4 summarise papers co-authored by the author of this thesis.

Section 3.2 summarises our paper [T3], which describes the BRITNeY Suite, a

formalism-independent user-extensible platform and tool for creating visuali-

sations of formal models. Section 3.3 summarises our paper [T4], which pro-

vides an industrial case-study where a visualisation of a formal model has been

developed and the BRITNeY Suite visualisation tool put into practical use. Sec-

tion 3.4 summarises our paper [T5], which provides a formalism-independent

abstract framework for visualisations based on game-theory. This framework

gives a formal definition of a visualisation of a formal model lifting visualisa-

tions above an ad-hoc expert-level to a more precise, easier accessible level. Fi-

nally, in Sect. 3.5, we sum up the contribution of our papers [T3], [T4], and [T5]

and provide directions for future work.

3.1 Approaches to Visualisation

Several tools supporting the methodology in Fig. 1.3 exist. In this section we

will describe some of them and discuss strengths and weaknesses of each.

TU Eindhoven’s ExSpect [50] is a tool for modelling based on coloured Petri

nets. ExSpect allows the user to view the state of models by associating wid-

gets with places of the model, and allows users to asynchronously interact with

the model using simple widgets. Widgets can, e.g., show the number of tokens

available on a certain place or add new tokens to places. This makes it possible

to inspect the state of the system using well-known widgets like counters and

gauges, and stimulate the execution by pushing buttons or entering text. Visu-

alisations are created on a dashboard by dragging in the desired widgets, mak-

ing it very easy to create visualisations. The disadvantage of this approach is,

firstly, that it is specific to coloured Petri nets (as it relies on tokens with types)

48 Chapter 3. Behavioural Visualisation of Formal Models

and, secondly, that input from the user is made by switching from one state

of the system to another without formally executing a transition in the model.

This is problematic because the visualisation not only reflects the behaviour

of the formal model, it also changes it, which makes formal verification of the

underlying formal model irrelevant, as the behaviour of the formal model can

be very different from the behaviour of the formal model with a visualisations.

Visualisation is completely integrated in the ExSpect tool, which makes it im-

possible to extend it or use the visualisations with other tools or formalisms.

Finally, this approach only allows users to create visualisations using a pre-

defined set of widgets, thereby making a “cartoon-like” visualisation like the

one in Fig. 1.13 impossible.

Rasmussen and Singh’s MIMIC/CPN [141] is a library which facilitates vi-

sualisation of coloured Petri net models created using DESIGN/CPN [37], a tool

for editing, simulating and analysing coloured Petri nets. It provides an API

which can be used to define and update visualisations. By annotating a CPN

model, functions of the API is called during execution of the model. Visual-

isations can be created using a standard drawing program, so it is easy for

even inexperienced users to layout a visualisation. The disadvantage of this

approach is that it is very inconvenient to have to change the model in order

to add a visualisation and the changes unnecessarily clutter the model. Fur-

thermore, MIMIC/CPN mainly focuses on state changes of the system, and ev-

erything shown to the user must be formulated as explicit updates, so it is not

possible to easily monitor the value of, e.g., a counter like in ExSpect. Also, the

library is very low-level, as it only allows the model to display, hide, and change

the position of items previously created using the editor or using the API. The

only higher-level widget supported is an ability to prompt the user for a string

value, and the only other way for the user to provide input to the model is to

click on buttons defined in the visualisation. Like ExSpect, MIMIC/CPN can

only be used in conjunction with a single tool, namely DESIGN/CPN, but un-

like ExSpect it is possible (yet very tedious) to extend the tool using Standard

ML. Finally, MIMIC/CPN is unable to handle asynchronous input, which must

be simulated by polling.

LTSA [116] is a tool for modelling using labelled transition systems devel-

oped by Magee and Kramer. LTSA allows users to animate models using a

library called SceneBeans [117, 149] developed by Pryce and Magee. Visuali-

sations are tied to models by associating animation activities with transition

labels. Visualisations are specified using an XML file. The SceneBeans library

relies on Java beans [88], which is a Java component framework, and is thus

very extensible, as it is possible to extend the library with new beans. The

method is nice and declarative, but it it very cumbersome to write the visual-

isations as XML files. Like MIMIC/CPN, the model is able to display or hide

already created objects of the visualisation, and can additionally move the ob-

jects around along paths. Visualisations created using the SceneBeans library

are unable to add new objects to the visualisations. The SceneBeans library

can be used without LTSA, but not in conjunction with LTSA models.

Kindler and Páles’ PNVis [99] is an add-on for Weber and Kinder’s Petri

Net Kernel [169], a modular tool for editing Petri nets. PNVis associates to-

kens with 3D objects and places with locations in a 3D world. The geometry of

the 3D world is described using an XML file, and the look of the objects is de-

scribed using VRML [86]. The visualisation is tied to the model by annotating

the model with inscriptions identifying places with locations in the 3D world

and tokens with objects. PNVis is suitable for modelling physical systems, but

not aimed at systems that do not immediately have a physical counter-part.

Furthermore the way visualisations are tied to the formal model requires, of

3.2. The BRITNeY Suite Animation Tool 49

course, that the model is a Petri net. While it is easy to create object descrip-

tions thanks to many available VRML editors, it is cumbersome to create the

description of the world using XML files.

Harel and Marelly’s Play-Engine [66] allows a prototype of a program to be

implemented by inputting scenarios (play-in) via an application-specific GUI.

The resulting program can then be executed (play-out). Compared to the ap-

proach of the other described tools, this makes the model implicit as it is cre-

ated indirectly via the input scenarios. Furthermore, the Play-Engine relies on

heavy-weight techniques to perform visualisation as the model is given implic-

itly. In order to decide how to execute the model, a complete model-checking

step is performed in each step, which is computationally expensive.

3.2 The BRITNeY Suite Animation Tool [T3]

The BRITNeY Suite [C2,T3] was originally developed because CPN Tools [C1,

33] needed a means of creating visualisations of CPN models. As CPN Tools

is written in the Beta programming language [115], it was deemed infeasible

to create the visualisation tool within the tool itself due to lack of off-the-shelf

libraries, meaning that all details of the tool had to be written from scratch.

Instead the BRITNeY Suite was realised as an independent application written

in Java. visualisation to the model. The paper [T3] is a tool presentation of the

BRITNeY Suite, and this section will give the gist of the paper.

The architecture of the BRITNeY Suite, when used with CPN Tools, can be

seen in Fig. 3.3. To the left we see that CPN Tools is actually composed of two

components, a CPN editor and a CPN simulator. The BRITNeY Suite, to the

right, consists of a main application and a number of extension plug-ins. Each

extension plug-in extends the main application with new kinds of visualisation.

Presently, over 20 extension plug-ins ship with the BRITNeY Suite, making it

possible to create various charts, including message sequence charts (MSC)

[67], gantt charts, and histograms, draw graphs in two and three dimensions,

generate textual reports that can be exported to PDF files, show various dialog

boxes for receiving information from and presenting information to users, and

for integrating visualisations using the SceneBeans library also used by LTSA.

CPN Tools communicates with the BRITNeY Suite using a standard Remote

Procedure Call (RPC) [32, Sect. 5.3] mechanism called XML-RPC [170]. In

order to make the communication seamless, a Stub generator component of the

BRITNeY Suite injects stub code into the CPN simulator, which can then be

used directly by the models.

CPN Editor

CPN Simulator

RPC stubs

BRITNeY Suite

Extension
plugins

Stub generator

generate

invoke

CPN Tools
Sc
en
eB
ea
ns

MS
C

etc
…

Figure 3.3: Architecture of the BRITNeY Suite when used with CPN Tools

50 Chapter 3. Behavioural Visualisation of Formal Models

Visualisations are tied to models like in MIMIC/CPN, by annotating the

model and calling functions driving the visualisation. Whenever a transition is

executed, the corresponding code is executed, which may invoke a stub and

consequently a function in the visualisation tool. Consider, e.g., the model

in Fig. 3.4(a). The model is the same as the one in Fig. 1.5 and unchanged

parts have been greyed out to highlight the changes. For each transition we

have added an annotation describing how the visualisation should be updated

when the transition is executed. We can, e.g., see that when the Send Data
transition is executed, an event is created from Sender to Network with a la-

bel corresponding to the data sent. In Fig. 3.4(b) we see an example of the

resulting visualisation. The first packet, containing ”Formal”, is transmitted

and acknowledged successfully (this packet has sequence number 1). Then the

next packet, the one containing ” model”, is transmitted but dropped by the

network. The packet is re-transmitted and an acknowledgement is sent. Be-

fore the acknowledgement arrives at the sender, the packet is re-transmitted.

The acknowledgement is then received and the network drops the outstanding

packet.

While the BRITNeY Suite may seem strongly tied to CPN Tools from this

description, this not the case. Any application can invoke the functions needed

to drive visualisations as a standard protocol is used; the stub generator merely

makes it more convenient to use the tool with CPN Tools. In fact it is possible

to extend the BRITNeY Suite with a stub generator for other modelling tools as

well, as the main application is not actually a solid box as indicated in Fig. 3.3,

but a hierarchy of plug-ins, which can be extended. A more detailed descrip-

tion of the architecture of the BRITNeY Suite can be found in our workshop

paper [C5]. Our paper [T3] also describes two industrial case studies where

the BRITNeY Suite has been used. One of these is the case from [T4], which is

described in Sect. 3.3.

One observation we can make is that most of the visualisations tools from

the previous section are integrated very tightly with the editor of some mod-

elling formalism or are low-level libraries that have to be integrated into real

tools. This means that it is difficult or even impossible to use the visualisation

tools with other formalisms. Furthermore, all of the tools except SceneBeans

have a closed architecture, which makes it difficult to extend the functionality

of the tools for people other than the formal method developers. In Table 3.1

the five visualisation tools mentioned in the previous section have been com-

pared with the BRITNeY Suite. We note that the BRITNeY Suite is shown

in two different variations, BRITNeY Suite 1 and BRITNeY Suite 2. The ver-

sion of the BRITNeY Suite described in this section, [T3], and used in the case

study of [T4] is labelled BRITNeY Suite 1. BRITNeY Suite 2 is the label of the

version of the BRITNeY Suite described in Sect. 3.4 and [T5]. The column

“Tool/formalism independent” shows whether the visualisation tool is tied so

close to a modelling tool that it is impossible to use it independently of the tool.

The column “User extensible” shows whether it is possible to extend the tool

for people other than the original developers. “Standard widgets” and “User-

drawn visualisation” show whether the tool supports standard widgets like

check-boxes, gauges, and buttons or animated cartoons or drawings specified

by the user. “GUI for creating visualisations” shows whether the visualisations

can be drawn by the user using a user-friendly designer. “Dynamic instantia-

tion of objects in visualisation” shows whether it is possible to instantiate ob-

jects in the visualisation (as opposed to requiring that all used objects must

be created manually before starting visualisation). The columns “Synchronous

operation” and “Asynchronous operation” indicate whether the tool supports

halting the execution of the model and waiting for user input respectively if it

3.2. The BRITNeY Suite Animation Tool 51

packets

packets^^
[(id, data)]

id

idid+1

(id, data)

(id, "")

id+1

id

(id, data)

(id, data)

(id, data)

(id, data)

Receive
Ack

Receive
Data

Drop

Send
Data

In
Buffer

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

Receive
ID

1

ID

Network 1

PACKET

Out
Buffer

1`(1, "Formal")++
1`(2, " model")

PACKET input (data);
output ();
action
msc.addEvent("Sender", "Network", "\""^data^"\"");

input (id, data);
output ();
action
msc.addEvent
 ("Network", "Receiver", "\""^data^"\"");
msc.addEvent
 ("Receiver", "Network", "Ack "^(Int.toString id))

input (id);
output ();
action
msc.addEvent("Network", "Sender", "Ack "^(Int.toString id))

input ();
output ();
action
msc.addInternalEvent("Network", "Drop")

(a)

(b)

Figure 3.4: The model of a network protocol from Fig. 1.5 with annotations to

drive a visualisation (a) and a resulting visualisation (b).

is possible for the user to manipulate a running simulation without requiring

that the model stops and waits for input. “Integrated with formalism” indicates

whether the tools supports a natural binding of the visualisation to the model.

52 Chapter 3. Behavioural Visualisation of Formal Models

Table 3.1: Comparison of various visualisation tools.

T
o
o
l

T
o
o
l/

fo
rm

a
li

sm
in

d
e
p

e
n

d
e
n

t
U

se
r

e
x
te

n
si

b
le

S
ta

n
d

a
rd

w
id

g
e
ts

U
se

r-
d

ra
w

n
v
is

u
a
li

sa
ti

o
n

s
G

U
I

fo
r

cr
e
a
ti

n
g

v
is

u
a
li

sa
ti

o
n

s
D

y
n

a
m

ic
in

st
a
n

ti
a
ti

o
n

o
f

o
b
je

ct
s

in
v
is

u
a
li

sa
ti

o
n

S
y
n

ch
ro

n
o
u

s
o
p

e
ra

ti
o
n

A
sy

n
ch

ro
n

o
u

s
o
p

e
ra

ti
o
n

In
te

g
ra

te
d

w
it

h
fo

rm
a
li

sm

ExSpect X X X X

MIMIC/CPN Xa X X X X

LTSA + SceneBeans Xb X X X X X

PNVis X Xc X X X X

Play-Engine X X X X

BRITNeY Suite 1d X X X X Xe X X

BRITNeY Suite 2d X X X X Xe X X X X

aMIMIC/CPN can be extended using SML code, but this is not for the faint of heart.
bThe SceneBeans library can be used independently of LTSA, but must be integrated in a Java

program.
cObject description are created using standard VRML files and they can be created using most

3D drawing programs. The description of the world must be written manually as an XML file.
dThe version of the BRITNeY Suite presented in [T3] (BRITNeY Suite 1) did not have support

for asynchronous operation and formalism integration. The version described in [T5] (BRITNeY

Suite 2) does support this.
eDepends on the visualisation.

3.3 Model-based Prototyping

of an Interoperability Protocol

for Mobile Ad-hoc Networks [T4]

The paper [T4], co-authored by the author of this thesis, describes an industrial

case study where coloured Petri nets have been used to develop a formal model

and a model-driven prototype of a network protocol. The project [101] is a

collaboration between Ericsson Denmark A/S, Telebit [47] and the CPN group

at the University of Aarhus [34].

In Figs. 3.5 and 3.6, we see two visualisations of an interoperability proto-

col for mobile ad-hoc networks [T4]. The protocol is used to ensure that the

mobile ad-hoc nodes (the laptops) can communicate with the stationary host,

even when on the move. Each gateway owns a specific sub-net of IP addresses.

Based on the IP address of an ad-hoc node, it is possible to decide which gate-

3.3. Model-based Prototyping of an Interoperability Protocol 53

Figure 3.5: A visualisation of an interoperability protocol for mobile ad-hoc

networks using message sequence charts.

way to use. The basic operation of the model is illustrated by the message

sequence chart in Fig. 3.5. When a Host wants to transmit data to a mobile

node, say Node 3, it looks up its address at the DNS server, which returns the

IP address of the mobile node. From the IP address, the Host knows to send

the packet via Gateway 1, which is closest to the mobile computer. The gate-

way forwards the packet to Node 3. Now, Node 3 moves physically, leading

to it being closer to Gateway 2. Now, at some point in time, Gateway 2 sends

out a gateway advertisement to all reachable mobile nodes. When Node 3 re-

ceives the advertisement it discovers that it is closer than Gateway 1. Node 3
switches IP addresses to one in the prefix owned by Gateway 2 and transmits

a DNS update, via its new gateway, to the DNS server. If the host now wants

to send data to Node 3, it will receive a new IP address from the DNS server,
and conclude that packets to Node 3 should now go though Gateway 2. The

visualisation in Fig. 3.6 enables users to observe the behaviour of the system

as coloured dots, representing packets, flow along the network. Furthermore,

the visualisation allows users to provide stimuli to the protocol by dragging

and dropping the laptops to indicate node movement. The use of an underlying

formal model can be completely hidden when experimenting with the proto-

type. The domain-specific GUI has been used in the project both internally

during protocol design and externally when presenting the designed protocol

to management and protocol engineers not familiar with CPN modelling. The

message sequence chart in Fig. 3.5 is also created using the BRITNeY Suite.

In this project the goal was not to arrive at an implementation but rather to

evaluate different techniques to facilitating communication between stationary

hosts and mobile nodes which may move during communication. This means

that the visualisation and formal model was actually the product rather than

a means to construct correct software. A contribution of the paper was there-

fore the idea of using the method in Fig. 1.3 to produce a model-driven proto-

type. Our industrial partners, Ericsson Denmark A/S, Telebit, in parallel with

the implementation of the model-driven prototype made an implementation of

a simpler version of the protocol using real software and hardware, and the

54 Chapter 3. Behavioural Visualisation of Formal Models

Figure 3.6: A cartoon-like visualisation of an interoperability protocol for mo-

bile ad-hoc networks based on network diagrams.

two prototypes were both presented to management. The model-driven proto-

type has several advantages over a hardware based prototype, including that

a model-based prototype is easier to control compared to a physical prototype,

in particular in the case of mobile nodes and wireless communication where

scenarios can be very difficult to control and reproduce. Furthermore, imple-

mentation details can be abstracted away and only the key parts of the design

have to be specified in detail. As an example, in the CPN model of the interop-

erability protocol we have abstracted away the routing mechanisms in the core

and ad-hoc networks, the mechanism used for distribution of advertisements,

and how nodes determine distance to gateways. Instead, we have modelled

the service provided by these components only. The possibility of making ab-

straction means that it is possible to obtain an executable prototype without

implementing all components. Also, the use of a model means that there is

no need to invest in physical equipment and no need to set up actual physi-

cal equipment. This also makes it possible to investigate larger scenarios, e.g.,

scenarios that may not be feasible to investigate with the available physical

equipment. All of these advantages stem from the fact that we have created

an abstract formal model. It would have been difficult to present the model to

management and engineers without a visualisation, however. The use of vi-

sualisation on top of a formal model yields further advantages, including that

the behaviour observed by the user is as defined by the underlying model that

formally specifies the design. The alternative would have been to implement

a separate visualisation package in, e.g., Java, totally detached from the CPN

model. We would then have obtained a model closer to the actual implemen-

tation, but the disadvantage of this approach would have been a double repre-

sentation of the dynamics of the interoperability protocol. The use of a domain

specific graphical user interface (the visualisation) has the advantage that the

design can be experimented with and explored without having knowledge of

the CPN modelling language. This is also illustrated by the fact that the idea

of the protocol has been described in this section using the visualisations de-

veloped during the project. The work presented in [T4] has demonstrated that

3.4. A Game-theoretic Approach to Behavioural Visualisation 55

using CP-nets and the supporting computer tools for building a model-based

prototype can provide a viable and useful alternative to building a physical

prototype. Furthermore, the CPN model can also serve as a basis for further

development of the interoperability protocol, e.g., by refining the modelling of

the routing and advertisement distribution mechanisms to the concrete proto-

cols that would be required to implement the solution. There is still a gap from

the CPN model to the actual implementation of the interoperability protocol,

but the CPN modelling has yielded an executable prototype that can be used

to explore the solution and serve as a basis for the later implementation.

Important lessons from the project include that asynchronous input to the

model is important. The model-based prototype described in [T4] let the pro-

tocol perform actions itself, such as sending out gateway advertisements, but

should react immediately when the user wants to send data to a mobile node

or when a mobile node is moved. As the project built on a version of the BRIT-

NeY Suite, which tied visualisations to models using inscriptions (the version

described in Sect. 3.2), we had to implement polling of the visualisation for

user interaction. When the model was able to perform a lot of transitions itself

(e.g. when a lot of packets and gateway advertisements were outstanding), this

would result in very poor feedback from the visualisation. Additionally, the

verbose inscriptions required to keep the visualisation up-to-date made it dif-

ficult to describe the model to the engineers who actually had experience with

CPN models.

3.4 A Game-theoretic Approach to Behavioural

Visualisation [T5]

As can be seen from Table 3.1, the version of the BRITNeY Suite described in

Sect. 3.2 did not have support for asynchronous operation and integration with

the formalism. The tool, as described in Sect. 3.2 and in [T3], is only able to

support synchronous operation as visualisation functions are called whenever

a transition occurs and it is not possible to do the opposite: force a transition

to occur whenever something happens in the visualisation. This is acceptable

if the purpose of the visualisation is only to show the operation of the mod-

els, such as the MSC in Fig. 3.4(b), which shows the execution of the network

protocol in Fig. 3.4(a), but did, e.g., not suffice for the visualisation in Fig. 3.6,

where the model should perform tasks in the background and react immedi-

ately on user stimulation such as when a node is moved. Another problem is

that the added annotations are big and hardly declarative, which clutters the

model and makes even the simple models seem complex as illustrated by the

annotated model in Fig. 3.4(a). This can be alleviated by using Lindstrøm and

Wells’ monitors [113], which basically move the inscriptions to a separate list.

A disadvantage of this approach is that the inscriptions are merely hidden,

which makes it difficult to see the connection between the visualisation and

the formal model.

While it is possible to ask the user for very simple information if we accept

stopping the execution of the model meanwhile, if we want to create a visu-

alisation which shows the operation of the model while allowing the user to

stimulate the model, we will need to implement a polling mechanism. This

clutters the model even further and makes the model and visualisation seem

unresponsive as the model will not react until the visualisation is polled by the

model. Furthermore, as annotations have to be added to each transition, it is

easy to forget some. If, e.g., the inscription at the Drop transition in Fig. 3.4(a)

56 Chapter 3. Behavioural Visualisation of Formal Models

is omitted, we would never see the Drop event on the Network. This may lead

domain experts to believe that packets cannot be lost. Additionally, this way

of adding visualisations is unique to CPN models (though the idea of execut-

ing code whenever a transition is executed of course can be adapted to other

formalisms as well). Finally, using this approach makes it difficult to switch

visualisations on and off unless we use monitors, which can be switched on and

off individually. For example, when we do analysis using the reachability graph

method as described in the previous chapter, we will need to execute a lot of

transitions. As transitions may not be executed in the order they would during

a simulation of the model, the resulting visualisation will often be useless and

only slow down analysis. It is also possible that we may wish to create more

than one visualisation for each model, for example we may want to create a

visualisation like the one in Fig. 1.13 and one like Fig. 3.4(b) for the network

protocol model in Fig. 3.4(a). If we have more than one visualisation we may

only want to see the result of the execution of the model using one visualisation

or we may want to see the result in both. As we are allowed to execute arbi-

trary code when a transition is executed, it is of course possible to write code

that facilitates this, but it will hardly be easy to read and modify and therefore

difficult to maintain.

The paper [T5] defines a formal framework for visualisations, which tries

to alleviate these problems, as we shall see later. The idea is to view a visuali-

sation as a formal model and synchronise it with the formal model we want to

visualise. To make it possible to view the result of the execution of the formal

model as well as provide stimulation to the model without letting the visualisa-

tion change the behaviour of the model, we rely on the notion of games. A game

is basically a labelled transitions system where the transitions are partitioned

into controllable and uncontrollable transitions. The notion is a formalisation

of normal board games, such as tic-tac-toe. Here a player plays against an op-

ponent. The player is able to make certain moves (such as drawing a cross on

the board) whereas the opponent is able to make other moves (such as adding

a nought to the board). The player is able to decide which moves he wishes to

make, his moves are controllable, whereas he is incapable of controlling which

moves the opponent wishes to make, they are uncontrollable. This is formalised

in Def. 3.1.

Definition 3.1 (Game) A game (or game transition system) is a tuple, G = (S,

T u, T c, ∆, sI , W), where

• S 6= ∅ is a set of states,

• T u and T c are sets of uncontrollable transitions respectively control-

lable transitions such that T u ∩ T c = ∅,

• ∆ ⊆ S × (T u ∪ T c) × S is the transition relation indicating successor

states,

• sI ∈ S is the initial state, and

• W ⊆ S is a set of winning states.

A similar definition can be created for any formalism which uses transition

systems as semantical foundation. One example of such a formalism is coloured

Petri nets, which can be extended to game coloured Petri nets, introduced in

[C4], by the author of this thesis. Game coloured Petri nets are coloured Petri

nets except the transitions are separated into controllable and uncontrollable

ones. Consider, e.g., the model in Fig. 3.7. This is the same model as the

one in Fig. 1.5 except the Drop transition is drawn with a dashed line. This

3.4. A Game-theoretic Approach to Behavioural Visualisation 57

packets

packets^^
[(id, data)]

id

idid+1

(id, data)

(id, "")

id+1

(id, data)

(id, data)

(id, data)

(id, data)

Receive
Ack

Receive
Data

Drop

Send
Data

In
Buffer

[]

PACKETS

Send
ID

1

ID

Network 2

PACKET

Receive
ID

1

ID

Network 1

PACKET

Out
Buffer

1`(1, "Formal")++
1`(2, " model")

PACKET

id

1

1`[]

1 1`1
1 1`1

2

1`(1,"Formal")++
1`(2," model")

Figure 3.7: A formal model of a simple protocol modelled as a game coloured

Petri net.

1 1

Sender Receiver

1

1 1

Sender Receiver

1
nSender Receiver

Figure 3.8: Fragment of a visualisation of a simple network protocol as a la-

belled transition system.

indicates that the Drop transition is uncontrollable. The rest of the transitions

are controllable. In this way we state that the network protocol is only able to

control what happens at the sender and receiver, it is unable to control whether

the network drops packets. In this way we have modelled the system we wish

to analyse, we have modelled the environment (the network), and we have

modelled how the two can interact.

The idea of the work in [T5] is to view visualisations as game transition

systems synchronised [2] with formal models also modelled as game transition

systems. The visualisation plays one side of the game and the formal model

the other. The rationale behind the idea of considering visualisations as tran-

sition systems is that we can consider what is visible in the visualisation as a

state of the visualisation, and changes to what can be seen can be considered

as transitions of the visualisation. Consider for example the fragment of a vi-

sualisation of the simple network protocol in Fig. 3.8. Here we see three states

(the ovals) and three labelled transitions between them (the arrows with labels

in rectangles). The states show different static views and the transitions are

animations taking the visualisation from one state to the next. Some of the

arrows are dashed, indicating that they are uncontrollable, i.e., not controlled

by the environment but by the system we model.

If we allow all synchronisations between a visualisation and a model, the

58 Chapter 3. Behavioural Visualisation of Formal Models

behaviour of the synchronisation is not defined by the model, but by the model

and the visualisation in unison. As an example, if we create a visualisation

consisting of only one state and no transitions, the synchronisation between

this and any formal model is also without behaviour which is not what we

want to obtain, as this corresponds to creating a visualisation of the network

protocol in Fig. 3.4(a) and omitting a visualisation of the Drop transition. We

want the behaviour of the synchronised system to be dictated by the model

and use the visualisation to show what happens in the model (we will deal

with stimulation of the model shortly). In order to do this, we require that the

visualisation is able to simulate [124] the model. In that way, the behaviour of

the synchronisation is dictated entirely by the model.

If we also want to manipulate the execution of the model, we need to loosen

the requirement that the visualisation must be able to simulate the model.

Rather than allowing arbitrary synchronisations, which would make it difficult

to distinguish between actions taken by the model itself and actions initiated

by the user, we rely on games. The idea is that the visualisation plays one side

of a game and the model plays the other side; controllable transitions of the

visualisation are executed synchronised with uncontrollable transitions of the

model and vice versa. We require that the uncontrollable transitions of one side

can simulate the controllable transitions of the other side. This is formulated

in Def. 3.2.

Definition 3.2 (Visualisation) Given a model as a game GM = (SM , T u
M , T c

M ,

∆M , sIM ,WM), a visualisation GV = (SV , T
u
V , T

c
V ,∆V , sIV ,WV), and a syn-

chronisation constraint S ⊆ (T u
M × T

c
V) ∪ (T c

M × T
u
V), we say that GV can be

used as a visualisation of GM with S iff there exists a relation∼⊆ SM ×SV such

that whenever sM ∼ sV

• for all α ∈ T c
M if sM

α
−→ sM

′ there exist sV
′ ∈ SV , β ∈ T u

V such that sM
′ ∼

sV
′, (α, β) ∈ S, and sV

β
−→ sV

′, and

• for all β ∈ T c
V if sV

β
−→ sV

′ there exist sM
′ ∈ SM , α ∈ T u

M such that sM
′ ∼

sV
′, (α, β) ∈ S, and sM

β
−→ sM

′.

Furthermore we require that sIM ∼ sIV .

In [T5] two example visualisations are described: message sequence charts

and SceneBeans visualisations. These visualisations correspond to Fig. 3.4(b)

and Fig. 1.13 respectively.

This view of visualisations addresses all the aforementioned problems: Ty-

ing the visualisation to a model no longer requires inscriptions, but rather the

definition of a synchronisation constraint. This constraint can of course be

defined using inscriptions, but it can also be specified separately, like in the

case of monitors. All the visualisations described in [T5] and [C4] comes with

a constraint which uses conventions rather than specifications to synchronise

visualisations to CPN models, completely eliminating the need to manually tie

visualisations to formal models. The basic idea is to use the name of transitions

and places to tie the visualisations to models. For example, when a transition

named Send Data is executed, an event named sendData can be generated in

a MSC, or the user can be shown a dialog box titled Send Data. In addition to

reducing clutter, this approach to visualisation also makes it possible to turn vi-

sualisations on and off easily, as we can just state that a certain constraint and

visualisation should not be used during execution of the model. As definition

3.2 requires that whenever the formal models makes a controllable move, the

visualisation must be able to make a corresponding uncontrollable move, it be-

comes impossible to forget an inscription leading to erroneous visualisations. If

3.5. Contributions and Future Work 59

we wish to ignore an event form the model, we must do so explicitly by adding a

transition to the visualisation corresponding to “do nothing” and synchronising

this transition with the event we wish to ignore. Furthermore, the definition

comes with built-in support for both synchronous and asynchronous operation.

While the definition requires that the visualisation and formal model always

run synchronously, it allows information to flow in both directions. Here infor-

mation flow from the formal model to the visualisation corresponds to visual

updates, whereas flow in the other direction corresponds to stimulation of the

model. This corresponds to asynchronous operation: when the user has pro-

vided no input, the model just executes normally and as soon as the user pro-

vides input the model is able to receive that input. Synchronous operation is

done simply by letting the model execute no transitions, e.g., because by letting

only controllable transitions (from the point of view of the model) be enabled.

The paper [T5] additionally considers implementation details. Firstly, a

Java interface is presented. The interface makes it possible to implement visu-

alisations without knowing which formalism will make use of it. As long as a

formalism has a semantical foundation in games it is possible to immediately

synchronise models created using the formalism with visualisations without

changing the formalism. The paper also considers how to deal with fairness

when executing a formal model with a visualisation. For example, we may of-

ten want the formal model to react immediately on user input, and this can

be done by giving priority to uncontrollable transitions (from the point of view

of the formal model). Additional fairness criteria, such as delays and strict al-

ternation are also considered. Two example uses of visualisations are given: a

revised version of the industrial case study described in [T4] and Sect. 3.3 and

visualisation of a certain kind of properties of reachability graphs.

3.5 Contributions and Future Work

In this chapter we have discussed a number of tools that can be used for visual-

isation of formal models. In particular we have seen the BRITNeY Suite, which

is developed by the author of this thesis. We have considered the architecture

of the BRITNeY Suite and we have seen an industrial case study where the

BRITNeY Suite has been used to develop a model-based prototype of a protocol

facilitating communication between mobile nodes in ad-hoc networks. Finally,

we have seen a game-theory-founded formal framework for describing visuali-

sations which gives visualisations a formal semantics, and provides a founda-

tion for tying visualisations to formalisms without altering either. This section

will discuss the contribution made to visualisation of formal models and some

applications and experiences by the author of this thesis. We go on to describe

several applications of the BRITNeY Suite by other research groups, and fi-

nally we provide some directions for future work.

The BRITNeY Suite, as presented in [T3], provides a tool which makes it

possible to visualise formal models. The tool is extensible by means of plug-ins

and has been integrated with CPN Tools. The BRITNeY Suite has already been

used in several projects, among these a project to to build a model-based proto-

type of a network protocol, as described in out paper [T4]. This project heavily

influenced the development of the BRITNeY Suite as it suggested several pos-

sible improvements of the BRITNeY Suite. One problem we observed was that

at the end of the project our industrial partner, Ericsson Denmark A/S, Telebit,

would like a copy of the developed prototype. Distribution of the prototype was

easy enough, but a very brief manual to help starting the prototype grew ex-

tremely long because setting up the prototype for experimentation was rather

60 Chapter 3. Behavioural Visualisation of Formal Models

complex. Therefore the BRITNeY Suite was changed to allow web-start [95]

launch of visualisations. By writing a simple specification and designing the

CPN model in a certain way (the details are available in our workshop pa-

per [C6]), it is possible to upload the BRITNeY Suite to a web-server and allow

users to start the visualisation using a single click in a web-browser.

Two other problems encountered in the industrial case study from [T4] have

been alleviated. Firstly, we needed to be able to stimulate the model during

simulation, and secondly, the very verbose annotations to the model made a

relatively easy to understand model seem overly complex. In the paper [T3]

we suggest that asynchronous interaction between the formal model and the

BRITNeY Suite could happen via special fusion places [91, Chap. 3], and in

[C3] we suggest that synchronous channels between the formal model and the

visualisation could alleviate the need for complex annotations of the model.

We believe that the direction taken in [T5], where visualisations are regarded

as games synchronised with the formal model, is nicer, more declarative, and

more formalism independent. In addition to the message sequence chart and

cartoon-line Scenebeans visualisations based on this idea, both presented in

Sect. 3.4 and [T5], our paper [C4], gives a third, CP-net specific, example of a

visualisation. This visualisation makes it possible to automatically generate

form-filling applications from a CPN model.

3.5.1 Applications by the Author of this Thesis

In addition to the case study described in [T4] and Sect. 3.3, we have used the

BRITNeY Suite in various other settings. Some of these will be described here.

The BRITNeY Suite Platform for Experiments with Coloured Petri

Nets

In [C5], we extend the scope of the BRITNeY Suite, by showing how it is possi-

ble to use the BRITNeY Suite to experiment with the CPN formalism. Thereby

we broaden the audience from formal methods experts, developing and visu-

alising formal models, to also include formalism developers, who improve the

formalism. This is possible by using the pluggable architecture of the BRIT-

NeY Suite to extend the tool and use fairly high-level constructs to interact

with the CPN model. It is possible use this to make high-level experiments

with the formalism. Some formalism developers think of new constructs whose

purpose is to make it easier and more natural to use the CPN formalism. Such

extensions include transition fusion [22] (or synchronous channels), inhibitor

arcs [21], bounded places, FIFO (first-in-first-out) places, and prioritised tran-

sitions. All of these constructs can be given a semantics by simply translating

them to regular CP-nets. Using the scripting facilities described in [C5], we

show how to implement a custom scheduler, which makes it possible to priori-

tise transitions in as little as 30 lines of code, demonstrating that it is relatively

easy to implement support for new language constructs to validating whether

they are useful.

Command-line loading of CPN models

The BRITNeY Suite has also been used by the author of this thesis in a more

unconventional way, namely to load CPN models from the command line. In the

ASCoVeCo project (Advanced State Space Methods and Computer tools for Ver-

ification of Communication Protocols) [3] at the University of Aarhus, among

other things, an automated test-suite of a tool for reachability graph analysis

3.5. Contributions and Future Work 61

is being developed (for more details refer to Sect. 2.5.1). The author of this

thesis participates in the ASCoVeCo project. As the tool implements reacha-

bility graph analysis of CPN models, it is necessary to automatically compile

the tool, load a model, and run analysis in order to automatically test the tool.

The trouble arises when we want to load the model, as CPN Tools [C1, 33] has

no means to do that from the command-line. Furthermore, as the CPN Tools

editor does not use the Model-View-Controller design pattern from Fig. 1.10, it

would be difficult and tedious to implement this feature.

As can be seen in Fig. 3.3, CPN Tools actually consists of two separate com-

ponents, an editor and a simulator. The simulator is only able to communicate

with one process at a time, so Fig. 3.3, while conceptually correct, does not ac-

tually reflect how communication takes place in practise. The BRITNeY Suite

generates and injects stubs into the CPN simulator, and therefore needs to

communicate with the simulator, so it implements a proxy, which mediates the

communication from the CPN editor to the simulator. Exploiting this proxy,

it is easy to record and replay this communication between the CPN editor

and the simulator using the BRITNeY Suite and later replay it. The BRIT-

NeY Suite implements the Model-View-Controller design pattern so it is easy

to create a command-line version which is able to replay the recorded commu-

nication.

Automatic testing thus consists of first recording the communication be-

tween the CPN editor and the simulator for each model in the test-suite. This

step requires manual intervention to load the model using CPN Tools, but only

has to be done once to generate a recording. Now, each time we wish to run

a test, we just need to recompile the reachability graph analysis tool (this of

course only has to be done once for each test run; after that the result can be

re-used for all models) and load the model by replaying the recording using a

command-line version of the BRITNeY Suite. Finally, we load and run the test.

Exploiting the BRITNeY Suite in this manner made it possible to imple-

ment automatic loading of CPN models into the simulator in days rather than

weeks or months, which would be required to create a loader from scratch or to

refactor CPN Tools to make it possible to create a command-line version.

3.5.2 Applications by other Research Groups

All applications discussed until now has been made by or in cooperation with

the author of this thesis. The BRITNeY Suite has also been used by several

other individuals and research groups. Use ranges from simple visualisation of

formal models, which is of course the main application of the BRITNeY Suite,

over meta-visualisation, where the BRITNeY Suite is used to provide visual-

isation of other formalisms by translating formal models into coloured Petri

net models, to other applications, where the BRITNeY Suite is used in nontra-

ditional ways to, e.g., to integrate the CPN simulator into a multi-formalism

tool. In this section we will provide some examples of applications BRITNeY

Suite. We will only provide few examples from the first category as the idea of

such applications is often very similar to our own application in [T4]. Some of

these applications are not published yet due to the fact that the BRITNeY Suite

was released to a broad audience in September 2006, only nine months before

this overview paper was written. Thus some of the applications described are

only known to the author thanks to personal communication. In these cases

no publications are cited, but the name and affiliation of the contact person is

mentioned.

62 Chapter 3. Behavioural Visualisation of Formal Models

Visualisation of blanc-loan applications

In [94] Jørgensen and Lassen use the BRITNeY Suite to create a visualisation

for requirements engineering of a new workflow system [164] for banks. The

goal of the workflow system is to support the handling of blanc loan applica-

tions. Users can interact with the visualisation by, e.g., setting up loans for

customers to make a loan request, or by changing the status of loan requests

on behalf of bank assistants and a bank manager to, e.g., grant or reject the

requests. The use of an abstract visualisation allows users to focus on the

workflow and not on how the interface of the future system should look like.

Visualisation of electronic patient record

In [144] Jørgensen, Lassen, and Aalst present a use-case consisting of a elec-

tronic patient record to be developed for Fyns County in Denmark. The work

builds on task descriptions, corresponding to the specification in Fig. 1.3, which

are translated to a model of the problem using coloured Petri nets. This model

is visualised using the BRITNeY Suite in order to validate that it really corre-

sponds to the task descriptions (specification) using the approach in Fig. 1.3.

From the coloured Petri net model a model of the system is constructed in

Aalst, Jørgensen, and Lassen’s coloured workflow nets [162] and translated to

Aalst and Hofstede’s YAWL (yet another workflow language) [163], which is an

executable workflow language.

Visualisation of behaviour of UML sequence diagrams

In [114] Machade et al. consider the derivation of system requirements from

user requirements. User requirements are requirements for a system imposed

by the future users of the system, and system requirements are requirements

from the developers, which makes is possible to satisfy the user requirements

in an implementation. Basically, [114] deals with going from the specification

to the formal model in Fig. 1.3.

The formal model (system requirements) is assumed to be specified using

UML [131] sequence diagrams, and the authors wish to use a method similar to

the one in Fig. 1.3 to validate that the formal model corresponds to the specifi-

cation (user requirements). To do that, UML sequence diagrams are translated

into CPN models and the BRITNeY Suite is used to visualise their behaviour.

This is thus an example of a meta-visualisation, as the BRITNeY Suite is used

to provide visualisations of formal models created using sequence diagrams.

The approach is exemplified using an information system called uPAIN whose

main concern is pain control of patients in a hospital.

In [145], Ribeiro and Fernandes also consider translation of UML sequence

diagrams to CPN models in order to facilitate visualisation of UML sequence

diagrams. Here a case study of an industrial reactor system is presented.

Implementation of a workflow simulator

When implementing workflow systems, one typically uses a language or tool

designed specifically for this. One advanced example of such a language is

YAWL [163]. Using YAWL it is possible to automatically generate a user in-

terface, which makes it possible for participants to acquire and complete tasks.

Another workflow language is coloured workflow nets [162], which are a re-

stricted form of coloured Petri nets. In order to obtain automatic generation

of a visualisation of the workflow system, the BRITNeY Suite is used. This

3.5. Contributions and Future Work 63

work is conducted by Kristian Bisgaard Lassen at the University of Aarhus,

Denmark.

It is of course immediately possible to use the BRITNeY Suite for visualisa-

tion as coloured workflow nets form a sub-class of coloured Petri nets and hence

can be executed by CPN Tools [C1,33]. But, due to the fact that coloured work-

flow nets are restricted and have a quite predictable structure (which shall

not be explained in this thesis), it is possible to generate a single visualisation

which can automatically be used for any coloured workflow net model. The

work uses the idea of regarding visualisations as games, and extends coloured

workflow nets slightly by separating transitions into controllable and uncon-

trollable transitions. This makes models special cases of game coloured Petri

nets [C4] models, which can be visualised by the BRITNeY Suite. Controllable

actions are performed automatically by the workflow system, and uncontrol-

lable actions must be performed by the user. The goal is to make visualisation

of coloured workflow net models a push-button technology.

Delegation of complex calculations in CPN models to Java

While Standard ML is well-suited for functional calculations, such as the im-

plementation of a coloured Petri net simulator, it is not very well-suited for

calculations which depend on and update complex data structures. Further-

more, Standard ML is not as well-known as more main-stream languages such

as Java, making it difficult to obtain off-the-shelf libraries for performing stan-

dard calculations or to employ programmers capable of implementing calcula-

tions. It may therefore be interesting to be able to perform some tasks, such as

complex imperative algorithms, in Java rather than in Standard ML.

The plug-in architecture of the BRITNeY Suite was originally tailored for

adding new kinds of visualisations, but can be used to call arbitrary Java code

from CPN models. The first use of this is in [T4], where a plug-in named Data-
Store is developed. The plug-in makes it possible to maintain a set of counters,

which in the project is used to show the size of the ingoing and outgoing buffers

of nodes in a network in a visualisation. Riahi Bilel from Faculté des Sciences

de Tunis (FST) uses the BRITNeY Suite to implement a protocol for sensor

networks. The goal of the protocol is to conserve energy in the sensor network

by turning off sensors not required for correct operation, i.e., that the entire

area where the network is deployed is covered and that all sensors are able

to communicate with a fixed base station. The protocol keeps track of a large

number of sensors. A CPN model keeps tracks of the sensors and a plug-in,

written in Java, calculates which sensors to turn on or off depending the sen-

sor configuration. The plug-in consists of 5 Java classes and 1300 lines of Java

code, which would be difficult to write in Standard ML unless the programmer

is experienced in the language.

Integration of CPN simulator into multi-formalism tool

György Balogh from Vanderbilt University, USA, wants to integrate the CPN

simulator into Morse et al.’s HLA (High Level Architecture) [84, 128], an in-

terface for integrating simulation engines of different formalisms into a single

tool. In order to facilitate such integration, the CPN simulator (or some glue

code) must alert HLA whenever it wants to increase its global clock (using a

version of CP-nets with support for time) from t1 to t2. HLA then makes a

call-back when the CPN simulator is allowed to increase the time to t2. HLA

can also perform information exchange (add tokens to the model) and grant a

smaller time increase t3 < t2 if the produced token is available at time t3.

64 Chapter 3. Behavioural Visualisation of Formal Models

As indicated in Fig. 3.3 it is possible for external processes to communi-

cate with the CPN simulator, but the protocol used [35] is quite complex and

tedious to implement. Rather than implementing the protocol from scratch,

the implementation which is a part of the BRITNeY Suite can be used. The

BRITNeY Suite provides two levels of abstractions of the protocol. One makes

it possible to exchange packets with the simulator. These packets must be

constructed by the implementer and the interface takes care of translating an

abstract description of packets into binary data. A higher level of interaction

is also possible. Here a remote procedure call protocol is implemented on top

of the interface for exchanging packets. Rather than worrying about construct-

ing packets correctly, the implementer only has to construct an object-oriented

representation of the model and use high-level method calls to interact with

the simulator. It is even possible to use the CPN editor part of CPN Tools for

loading the CPN model by using the simulator proxy or recording facility of the

BRITNeY Suite as described earlier.

3.5.3 Future Work

In this section we will provide some directions for future work. As most of

the ideas described earlier in this chapter has already been implemented and

tested in practise, future work mainly consists of improvement of the tools and

documentation. We also describe an interesting way to combine visualisations,

as described in this chapter, with formal verification as described in Chapter 2,

by using a visualisation to convey the fact that certain properties do not hold

for a formal model.

Improvement of the BRITNeY Suite platform for experiments

As can be seen from some of the applications, the users of the BRITNeY Suite

has broadened from consisting of formal methods experts wishing to visualise

the behaviour of a formal model to also include formal methods developers ex-

perimenting with the formalism to evaluate extensions or to use the formalism

in new ways. As described earlier and in a workshop paper by the author

of this thesis, [C5], this is possible with the current version of the BRITNeY

Suite thanks to a pluggable architecture and extensive support for scripting.

This platform can be enhanced in several ways, however, and here we describe

some useful improvements.

While CPN Tools supports incremental syntax check of CPN models, this

is not supported by the BRITNeY Suite. This makes the BRITNeY Suite less

usable for experiments, as time must be spent re-checking models from scratch.

The current implementation automatically updates graphical representations

of models as the internal representation is constructed, and ii would be nice to

improve this to also support incremental syntax check, making it even easier

to load, modify and experiment with CPN models.

Another, more pragmatic, problem is that while some examples exist, the

documentation of the tool could be improved. Currently the documentation

consists mainly of a couple of simple examples, which is fine for applications,

which use the BRITNeY Suite for visualisation of concrete models. While ex-

amples exist that demonstrate how to create extension plug-ins (the source

code for one is available in [C5]), they are very simplistic, and only show sim-

ple ways to interact with the internals of the BRITNeY Suite. This, of course,

makes difficult to implement meta-visualisations or any of the unconventional

applications of the BRITNeY Suite. Better and more advanced examples and a

3.5. Contributions and Future Work 65

better reference manual of the internals of the BRITNeY Suite would alleviate

this problem.

Finally, some of the technical decisions made when the BRITNeY Suite was

developed would probably be made differently today. The first change would be

to use SOAP web-services [63] instead of XML-RPC [170] for invoking meth-

ods in extension plug-ins, and the second change would be to implement the

BRITNeY Suite either as a plug-in to Eclipse [41] or as an Eclipse Rich Client

Platform [120] application. Let us look at the advantages and disadvantages

of each of these in turn.

The use of XML-RPC for communication with the extension plug-ins ben-

efits from the fact the XML-RPC is an open protocol which is easy to under-

stand and implement. Another way to communicate with remote programs is

SOAP web-services, which, like XML-RPC, uses XML messages to invoke re-

mote functions. SOAP web-services additionally supports the Web Service Def-

inition Language (WSDL) [20], an XML-language for describing web-services.

Using this language we could eliminate the stub-generator from the BRITNeY

Suite, and make the clients (such as the CPN simulator) inspect the tool and

generate stub-code themselves. This has the huge advantage that such clients

exist for many programming languages, making it very easy to integrate sup-

port for the BRITNeY Suite in tools for simulation of formal models. The rea-

son for not doing this already is that the SOAP web-services protocol is very

complex and no client exist for Standard ML, the implementation language of

the CPN simulator. As the CPN simulator is the primary user of the BRIT-

NeY Suite, to not break this support and not implement a very complex client

library, the BRITNeY Suite sticks with XML-RPC currently. Implementing

support for SOAP in parallel with XML-RPC is being considered, however, in

order to get the best of both worlds.

The BRITNeY Suite implements its own plug-in mechanism using a very

simplistic plug-in library, the Java Plug-in Framework [89]. This makes it

possible to load code on run-time, either from the local disk or from the In-

ternet. The framework makes it difficult or even impossible to use an Inte-

grated Development Environment (IDE) such as Eclipse for debugging and

single-stepping through the application. If development had happened within

Eclipse, building on the frameworks distributed with Eclipse, it would have

been possible to debug the program within the Eclipse IDE. Furthermore, it

would be possible to distribute plug-ins as Eclipse projects, enabling use of

parts of the functionality without using the entire tool. Finally, it would be

possible to immediately integrate the BRITNeY Suite into applications written

using Eclipse’s frameworks, thereby creating a single tool for writing real pro-

grams, creating formal models, and for visualising formal models (and possibly

real programs as well). Work on moving the BRITNeY Suite to the Eclipse

platform is currently started by the author of this thesis.

Improvement of implementation of visualisations as games

A prototype the framework based on game-theory has been implemented in

the BRITNeY Suite. The prototype implements fairness of the execution, i.e.,

how control is transferred between the user and the tool, in a couple of ways,

namely strict alternation and preference of uncontrollable (user initiated) tran-

sitions. While this is enough for simple examples, it would be very interesting

to experiment with fairness defined by a timed formalism where the execution

of transitions take time.

The current implementation focuses primarily on the events of the system.

For example, the message sequence chart visualisation shows transitions only.

66 Chapter 3. Behavioural Visualisation of Formal Models

The SceneBeans visualisation is also only able to interact with the formal

model via synchronised transitions. This is fine for formalisms that are pri-

marily event-oriented, such as labelled transition systems, where states are

opaque. In formalisms that are both state and event oriented, such as Petri

nets and in particular coloured Petri nets, this is not satisfiable. For example,

the visualisation developed in [T4], shown in Fig. 3.6, shows the contents of the

DNS database (upper left corner), but this is not easy to do using the current

implementation as all updates to the shown DNS database must be formulated

as changes to the visualisation. It would be much easier to just state that the

rectangle in the upper left corner should always reflect the contents of the place

modelling the DNS database. The definition (Def. 3.2) allows this, as informa-

tion can be exchanged via the synchronisation, but the implementation does

not reflect that. It would be very useful to be able to declaratively reflect the

state of he system in the visualisation.

Visualisation of error traces for property violations

This section assumes that the user is familiar with how winning strategies

are calculated for games and how CTL properties are verified. While [T5],

reprinted in Chapter 9, states that it is possible to visualise error traces to

violations of properties discovered using reachability graph analysis, this has

not been implemented and explored extensively.

We want to address the problem that is that it is very difficult to visualise

the existence/non-existence of a winning strategy of a game. For games a win-

ning strategy is basically an annotated reachability graph. All states where

the user has a winning strategy are marked as such. Such an annotated graph

can of course just be shown to the user with winning states coloured green and

other stated coloured red. This can be useful to understand why no winning

strategy exist for small examples. For large examples, such graphs can have

an extremely large number of nodes, making such a visualisation useless in

practise.

In [T5], we suggest using a visualisation of the system created using game-

theory and let the user play against a winning strategy. The idea is that if a

user needs conviction that a winning strategy exists, it is because he thinks he

has a winning strategy for the other side. We let the user play according to his

“winning” strategy – he plays by interacting with a visualisation of the formal

model, while the tool makes moves according to the (real) winning strategy.

As the tool knows a real winning strategy, the user will eventually arrive at

a situation where the system performs some unanticipated action, which may

convince him that no winning strategy exists. Otherwise, the user will believe

he made a mistake, try again until he has exhausted all his options, and finally

be convinced that the computer is always able to win the game. Unanticipated

actions performed by the tool can be useful to understand why a winning strat-

egy exists: if the action is allowed by the model but not by the specification, the

model does not accurately reflect the specification. If, on the other hand, both

the specification and the model allows the action, the specification may need

to be modified and the model updated accordingly. This can be made to work

because, as the user does not have a winning strategy in the initial state, the

tool will just have to execute transitions ensuring that the user is never able to

reach a state from which he has a winning strategy. This is possible because

otherwise the user would have winning strategy.

In a similar way, we can let a user contend against the system to convince

the user that a certain CTL property is not satisfied. A proof that a CTL for-

mula does not hold is an annotated reachability graph, where the annotations

3.5. Contributions and Future Work 67

are sub-formulae of the CTL formula we wish to check. Each node of the reach-

ability graph is annotated with all sub-formulae that hold in the corresponding

state. A visualisation of the fact that the property does not hold also uses a vi-

sualisation of the model created as a game, and shows the user which formula

he has to prove in the shown state, initially the entire formula. CTL formulae

basically consist of statements that must hold on all traces reachable from a

state and statements that must hold on at least one trace. The user provides a

transition to execute (using the visualisation) whenever existence needs to be

proved, and the tool chooses a transition whenever statements must hold for

all traces (naturally selecting a trace where the property does not hold). Like in

the case of visualising winning strategies of games, this will eventually lead to

a situation where some atomic proposition does not hold for the current state,

in which case the strategy of the user was incorrect, causing the user to accept

that the property does not hold or to try again.

It would be nice to have an implementation of this idea in order to exper-

imentally validate that it is a useful way to show error traces. Of course, a

visualisation created in this way can also be used to show error traces for sim-

ple properties for invariant and LTL properties.

Chapter 4

Summary

This chapter sums up the work done as part of this thesis as well as applica-

tions of the work conducted and directions for future work. The contributions

of the work is summarised in Sect. 4.1, applications by the thesis author and

others of the tools and methods developed as part of the thesis are summarised

in Sect. 4.2, and interesting directions for future research are summarised in

Sect. 4.3. For more detailed outlines of applications and future work, please

refer to Sects. 2.5 and 3.5.

4.1 Contributions

This section summarises the contributions made as part of this thesis. As in-

dicated by the structure of the thesis, work has been done within two areas:

behavioural verification of formal models by means of reachability graphs and

behavioural visualisation of formal models. The main contribution within the

field of reachability graph analysis of formal models consists of improving al-

gorithms for efficient storage of reachability graphs [T2, T1]. The main contri-

butions within the field of visualisation of formal models consist of the develop-

ment of a tool for visualisation of the behaviour of formal models, the BRITNeY

Suite [T3,C2], an application of the BRITNeY Suite visualisation tool to build a

model-based prototype of a protocol facilitating communication between nodes

in a mobile ad-hoc network, and a formal framework for visualisations [T5]. In

the following we provide a more detailed perspective on the main contributions.

Extension of the sweep-line method to handle liveness properties

Prior to our work conducted in [T1], the sweep-line method could only check

invariant properties [25, 104] and even then it was not possible in general to

provide a trace from the initial state to a violating state using internal mem-

ory only, as parts of the reachability graph have been removed from memory

(though work by Kristensen and Mailund existed which use external memory

to provide error traces [105]).

Using our work in [T1], it becomes possible to check liveness properties, e.g.,

formulated using Linear Temporal Logic (LTL) [74], as well as providing error

traces, using internal memory only, by storing a very compact representation

of the reachability graph in internal memory. The method is shown to use

significantly less memory on models with a clear notion of progress, while using

only a small overhead for methods with little or no notion of progress.

69

70 Chapter 4. Summary

Making the hash-compaction reduction technique complete

The hash-compaction technique stores the reachability graph in a highly com-

pact manner by compressing state descriptors using a hash function. The

drawback is that the hash function may not be injective, causing hash colli-

sions, where two or more states have the same compressed state descriptor. As

only one state with each compressed state descriptor is explored, this leads to

parts of the reachability graph remaining unexplored. Using more than one

hash function [155] the number of hash collisions can be reduced, but the basic

problem, namely that the method is incomplete, persists.

The ComBack method [T2] extends the hash compaction reduction reduc-

tion technique by maintaining a spanning tree of the reachability graph rooted

in the initial state. This makes it possible to resolve hash collisions on-the-

fly during exploration, thereby making the method complete. The method is

shown to perform reasonably well on both academic and real-life examples,

trading execution time for memory usage compared to ordinary reachability

graph exploration.

Development of the BRITNeY Suite visualisation tool

Prior to the development of the BRITNeY Suite [T3, C2], a lot of visualisation

tools existed. Most of these tools were closed source, used a closed architecture,

were tied to a single tool for formal modelling, or had more than one of these

problems. Furthermore, CPN Tools [C1,33] had no means of behavioural visu-

alisation except using Gallash and Kristensen’s COMMS/CPN library [53] for

communication with external programs. This required implementing a Remote

Procedure Call mechanism in each case as well as writing visualisations from

scratch in a standard programming language such as Java or C++.

The BRITNeY Suite is open source and has an open architecture, which

allows extension of the tool by means of plug-ins or scripts. Furthermore, it is

independent of the modelling tool. This makes it possible to use the BRITNeY

Suite with CPN Tools, which is also it main application. The BRITNeY Suite

can also be used with other modelling tools and even other applications as

well. While the BRITNeY Suite offers more than 20 plug-ins out of the box, it

is easy to extend the tool to provide custom visualisations as required, due to

the pluggable architecture and open source license.

Development of a model-based prototype of a protocol facilitating

communication between nodes in a mobile ad-hoc network

During the B2NCW project [101] at Ericsson Denmark A/S, Telebit [47], with

the resources and time available, it was deemed impossible to implement a pro-

totype using real hardware of the protocol facilitating communication between

nodes in a mobile ad-hoc network. Instead a prototype of a different, simpler,

protocol was developed using real hardware, but as the extended protocol was

deemed a better choice, a prototype based on a formal model was developed of

this protocol.

The model-based prototype of the extended protocol was developed as a

coloured Petri net model and a visualisation was developed to allow people

who are not formal methods-experts to experiment with it. During the project,

the BRITNeY Suite was developed and tested in a real-life setting.

4.2. Applications 71

Development of a formal framework for describing visualisations of

the behaviour of formal models

We have devised a framework [T5], which regards both visualisations and for-

mal models as game transitions systems, which are labelled transition systems

where the transitions are separated into controllable and uncontrollable tran-

sitions. The two are executed simultaneously in a manner so that controllable

transitions of the formal model are synchronised with uncontrollable transi-

tions of the visualisation and vice versa. We require that whenever a control-

lable transition can be executed in the formal model or the visualisation, a

corresponding uncontrollable transition can be executed in the other. The in-

tuition is that actions initiated by the formal model (controllable transitions in

the formal model) are shown to the user, and stimulation of the visualisation

(controllable transitions in the visualisation) are reflected in the formal model.

This approach has many advantages over previous visualisation tools. Firstly,

this approach does not require changes to most formalisms, as their dynamic

behaviours are usually stated using labelled transition systems as semanti-

cal domain. Secondly, it is easy to extend tools supporting visualisations in

this manner as it is possible to provide a uniform interface for visualisations.

Furthermore, it is difficult to forget visualisation elements as we require that

the visualisation is able to accommodate any transition allowed in the formal

model, so the only way to ignore a transition in the model is to do so explicitly

and therefore deliberately.

4.2 Applications

This section sums up applications of the tools and methods described in this

thesis. While the work of this thesis, as mentioned earlier, falls into two cat-

egories, applications of the methods are only available within the field of be-

havioural visualisation of formal models. The reason is that one of the verifi-

cation papers, the one describing the ComBack method [T2], has only recently

been published at the time of writing. The other verification method, the ex-

tended version of the sweep-line method [T1], is mainly useful for checking

more complex properties, such as liveness using Linear Temporal Logic, and

this does not have easy accessible tool support in tools supporting the algo-

rithm, making real-life applications difficult. The lack of real-life applications

has diminished the requirement for improvements of the algorithm. Applica-

tions of the BRITNeY Suite fall into three categories: use of the BRITNeY Suite

for visualisation, use of the BRITNeY Suite for meta-visualisation, and other

uses of the BRITNeY Suite. Each of these categories will be explained in the

following.

Visualisation

The BRITNeY Suite has of course been used for visualisation of formal models

in numerous cases. One such example is of course Kristensen, the author of

this thesis, and Nørgaard’s model-based prototyping of a protocol facilitating

communication between nodes in mobile ad-hoc networks [T4]. Another appli-

cation performed by Jørgensen and Lassen is visualisation of a formal model

of blanc loan applications [94] for requirements engineering. The BRITNeY

Suite has also been used by Jørgensen, Lassen, and Aalst to verify that a for-

mal model of requirements for an electronic patient record [144] corresponds

to the intended system.

72 Chapter 4. Summary

Meta-visualisation

The BRITNeY Suite has also been used to implement visualisation of other for-

malisms by translating them into CP-nets. One such example is visualisation

of UML [131] sequence diagrams, which is done independently by Machade

et al. in [114] and Ribeiro and Fernandes in [145]. Both of these papers also

present an industrial example of this. The BRITNeY Suite is also used to im-

plement a workflow simulator based on coloured workflow nets [162] by Kris-

tian Bisgaard Lassen from the University of Aarhus, Denmark. This work uses

the idea of visualisations as games to develop a single visualisation, which can

be used for any coloured workflow net model.

Other Applications of the BRITNeY Suite

The BRITNeY Suite has also been used in other ways. Riahi Bilel from Faculté

des Sciences de Tunis (FST) uses the BRITNeY Suite to integrate algorithms

written in Java with a CPN model by writing a visualisation that does not

actually show anything, but only performs the required calculations. The au-

thor of this thesis has used the BRITNeY Suite to load CPN models from the

command-line, which is not possible or feasible to implement using CPN Tools.

György Balogh from Vanderbilt University, USA, integrate the CPN simulator

into Morse et al.’s HLA (High Level Architecture) [84,128], by writing glue code

as an extension of the BRITNeY Suite.

4.3 Future Work

As can be seen in Sects. 4.1 and 4.2, the goal of this thesis, namely to con-

struct and improve methods for locating errors in computer systems, has been

reached. We have focused on a tool for visualisation of the behaviour of formal

models, and shown, via our own and other people’s case studies, that this tool

and method is indeed very useful for improving formal models. We have im-

proved the state-of-the-art of methods for reachability graph, thereby making

it possible to analyse even larger systems using this analysis approach. Still a

lot of work remains, though. In Sects. 2.5.1 and 3.5.3 we provide several inter-

esting directions for future work. The rest of this thesis is dedicated to briefly

summarise this.

Improvement of methods and tools for behavioural verification using

reachability graphs

The ComBack method [T2] can be extended and combined with other reduction

techniques in different ways. Interesting ways to do that is to combine it with

partial order reduction techniques [28,136], which are known to reduce the in-

degrees, as this would minimise the number of reconstructions required by the

algorithm. It would also be interesting to combine the method with the sweep-

line method, so states in front of the sweep-line are cached, also reducing the

number of reconstructions.

In order for the methods described to be really useful, they should be im-

plemented in tools which make it easy to use them on real models. Such a tool

would need to implement user-friendly ways to specify properties to check. This

includes user-friendly ways to specify properties that hold in a given state and

natural ways to combine such properties into more complex properties stating

facts about the dynamics of the formal model. We suggest looking at SPIN’s

4.3. Future Work 73

never-claims [77], which formulate properties in the same language as the for-

mal models, Petri’s Facts [139], which are Petri net transitions which must

never be enabled, and Cardelli and Gordon’s ambient logic [16], which state

properties of the ambient calculus using a syntax that closely resembles the

syntax used to specify the ambient calculus models. All of these approaches

use the formalism itself or something very similar to specify properties, which

is very different from CPN Tools, which uses Standard ML and temporal logics

such as LTL and CTL to specify properties.

Furthermore, to support development of even better reduction techniques,

a test-suite must be devised to test the methods. Such a test-suite must be

able to automatically perform a large number of executions of verifications of

various properties using different reduction techniques on a varied selection

of models. Furthermore, it should be easy to navigate the results and track

improvement over time.

Improvement of the BRITNeY Suite for behavioural visualisation

The BRITNeY Suite has already been used in numerous applications, but es-

pecially for more advanced applications improvements can be made. Firstly,

the documentation is not completely satisfactory, and could be improved. Fur-

thermore, some technical choices would be made differently today. The first

choice would be to use SOAP web-services [63] instead of the currently used

XML-RPC [170]. SOAP, today, enjoys wider acceptance and supports the Web

Service Definition Language (WSDL) [20] for describing services, which makes

it easier to integrate the BRITNeY Suite with other tools for formal modelling

thanks to the wide availability of implementations of both SOAP and WSDL.

As no such implementation exist for Standard ML, the implementation lan-

guage of the CPN simulator used in CPN Tools [C1, 33], a complete replace-

ment of the current implementation is unlikely to happen, however. Another,

more promising, change is to use the Eclipse [41] platform rather than the

custom plug-in mechanism used today. This would make it easier to develop

for the BRITNeY Suite, as the Eclipse IDE could be used to debug and single-

step through code, something which is not possible today. Furthermore, such a

change would enable the integration of an IDE for developing (Java) code with

a tool for specification using formal models and for visualising said specifica-

tions. This would make it possible to keep the specification very close to the

actual implementation.

The implementation of visualisations as games, as implemented by the

BRITNeY Suite at the time of writing, mainly focuses on events, which is not

completely satisfactory for formalisms that are both state and event oriented,

such as CP-nets. It would be nice to make synchronisation of states easy as

well.

Use of behavioural visualisation to convey results of behavioural ver-

ification

The final direction for future work, we present in this thesis is a combination

of the two areas dealt with in this thesis, namely behavioural verification of

formal models and behavioural visualisation of formal models. The idea is to

use a visualisation to present counter-examples to users. Violations of simple

properties can often be visualised easily, e.g., to prove that invariant properties

do not hold, we can just show an execution sequence leading to a violating state,

whereas violations of other kinds of properties are not that easy to present to

the user. It is quite difficult to present counter-examples to the existence of

74 Chapter 4. Summary

winning strategies of games or to the validity of a CTL formula, however, as

they are basically annotated reachability graphs.

The idea is to let the user contend against the computer to prove the ex-

istence of a winning strategy or the validity of the CTL formula. The user

believes that the property holds, while the computer has a counter-example,

proving that the property does not hold. The user selects certain transitions

to execute and the computer selects other transitions. The user selects tran-

sitions using a visualisation, and the transitions selected by the computer are

shown using the same visualisation. The idea is that at some point the com-

puter will select an unanticipated transitions (or the user is unable to select an

anticipated transition), which convince the user that winning strategy cannot

exist/that the CTL formula does not hold. This can be because the model is

wrong (if the computer performs an action not permitted by the specification or

because the user cannot choose a transition which should be possible according

to the specification), in which case the model needs to be changed. It is also

possible that the specification is wrong, in which case the specification has to

be modified and the model updated accordingly.

Part II

Papers

75

Chapter 5

Obtaining Memory-Efficient

Reachability Graph Representations

Using the Sweep-Line Method

The paper Obtaining Memory-Efficient Reachability Graph Representations

Using the Sweep-Line Method presented in this chapter has been published

as a conference paper [T1].

[T1] T. Mailund and M. Westergaard. Obtaining Memory-Efficient Reacha-

bility Graph Representations Using the Sweep-Line Method. In Proc.

of TACAS’04, volume 2988 of LNCS, pages 177–191. Springer-Verlag,

2004.

The version presented here is identical to the conference paper except for minor

typographical changes.

77

5.1. Introduction 79

Obtaining Memory-Efficient Reachability
Graph Representations Using the

Sweep-Line Method

Thomas Mailund Michael Westergaard

Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mailund,mw}@daimi.au.dk

Abstract

This paper is concerned with a memory-efficient representation of reach-

ability graphs. We describe a technique that enables us to represent each

reachable marking in a number of bits close to the theoretical minimum

needed for explicit state enumeration. The technique maps each state vec-

tor onto a number between zero and the number of reachable states and

uses the sweep-line method to delete the state vectors themselves. A pro-

totype of the proposed technique has been implemented and experimental

results are reported.

Keywords: Verification; state space methods; state space reduction; mem-

ory efficient state representation; the sweep-line method.

5.1 Introduction

A central problem in the application of reachability graph (also known as state-

space) methods is the memory usage. Even relatively simple systems can have

an astronomical number of reachable states, and when using basic exhaustive

search [73], all states need to be represented in memory at the same time. Even

methods that explore only parts of the reachability graph [6, 59, 134, 160] or

explore a reduced reachability graph [46,85,92], often need to store thousands

or millions of states.

When storing states explicitly – as opposed to using a symbolic representa-

tion such as Binary Decision Diagrams [12, 13] – the minimal number of bits

needed to distinguish between N states is ⌈log2N⌉ bits per state. In a system

withR reachable states we should therefore be able to store all reachable states

using only in the order of R · ⌈log2R⌉ bits. The number of reachable states, R,

however, is usually unknown until after the reachability graph exploration;

rather than knowing the number of reachable states we know the number of

syntactically possible states S, where S is usually significantly larger than R.

To distinguish between S possible states ⌈log2 S⌉ bits are needed, so to store

the R reachable states R · ⌈log2 S⌉ bits are needed. Additional memory will be

needed to store transitions.

In this paper we consider mapping the state vectors of size ⌈log2 S⌉ bits (the

full state vectors or markings) to representations of length ⌈log2R⌉ (the con-

densed representations), in such a way that full state vectors can be restored

when the reachability graph is subsequently analysed. Our approach is the

following: We conduct a reachability graph exploration and assign to each new

80 Chapter 5. Memory-Efficient Reachability Graph Representations

unprocessed state a new number, starting from zero and incrementing with one

after each assignment. The states are in this way represented by numbers in

the interval 0, . . . , R−1. Since the state representation obtained in this way has

no relation to the information stored in the full state vector, the condensed rep-

resentation cannot be used to distinguish between previously processed states

and new states. To get around this problem, we keep the original (full) state

vectors in a table as long as needed to recognise previously seen states. The

sweep-line method [25, 104] is used to remove the full state vectors when they

are no longer needed, from memory.

In this paper we will use Place/Transition Petri nets [36] (P/T net) formal-

ism as example to illustrate the different memory requirements needed to dis-

tinguish between the elements of the set of syntactically possible states and the

set of reachable states. The use of P/T nets is only an example, the presented

method applies to all formalisms where the sweep-line method can be used.

The paper is structured as follows: In Sect. 5.2 we summarise the nota-

tion and terminology for P/T nets and reachability graphs that we will use. In

Sect. 5.3 we describe the condensed representation of a reachability graph, how

this representation can be traversed, and how to restore enough information

about the full state vectors to verify properties about the original system. In

Sect. 5.4 we consider how the condensed representation can be calculated and

in Sect. 5.5 we describe how the sweep-line method can be used to keep memory

usage low during this construction. In Sect. 5.6 we report experimental results

and in Sect. 5.7 we give our conclusions.

5.2 Petri Nets and Reachability Graphs

In this section we define reachability graphs of Place/Transition Petri nets.

Definition 5.1 A Place/Transition Petri net is a tuple N = (P, T, F,mI)
where P is a set of places, T is a set of transitions such that P ∩ T = ∅,
F ⊆ P × T ∪ T × P is the flow-relation, and mI : P → N is the initial marking.

We will use the usual notation for pre- and post-sets of nodes x ∈ P ∪ T , i.e.,

•x = {y ∈ P ∪T | (y, x) ∈ F} and x• = {y ∈ P ∪T | (x, y) ∈ F}. The state of a P/T

net is given by a marking of the places, which is formally a multi-set over the

places m : P → N. Since sets are a special cases of multi-sets, we will use the

notation •x to denote both the set •x as defined above, but also the multi-set

given by y 7→ 1 when y ∈ •x and y 7→ 0 when y 6∈ •x. We will assume that the

relations <, ≤, >, and ≥, and operations + and −, on multi-sets are defined as

usual, i.e. for two multi-sets, m1,m2 : P → N, m1 ≤ m2 ⇐⇒ ∀p ∈ P.m1(p) ≤
m2(p), m1 < m2 ⇐⇒ m1 ≤ m2 ∧m1 6= m2, (m1 +m2)(p) = m1(p) +m2(p), and

(m1 −m2)(p) = m1(p) −m2(p) when m1 ≤ m2 and m1 −m2 is undefined when

m1 6≤ m2.

Definition 5.2 A transition t ∈ T is enabled in marking m : P → N if m ≥ •t.
If t is enabled in m, it can occur and lead to marking m′. This is written

m [t〉m′, where m′ is defined by m′ = (m− •t) + t•.

We will use the common notation m [σ〉m′ for σ = t1t2 . . . tn ∈ T ∗ to mean

∃mi : P → N for i = 0, . . . , n such that m = m0, ∀i = 0, . . . , n − 1.mi [ti〉mi+1,

and m′ = mn. We will also write m [∗〉m′ to mean ∃σ ∈ T ∗ such that m [σ〉m′.

We say that a marking m′ is reachable from another marking m if m [∗〉m′ and

we let [m〉 = {m′ |m [∗〉m′} denote the set of markings reachable fromm. When

we talk about the set of reachable markings of a P/T net, we usually mean the

5.3. Condensed Graph Representation 81

set of markings reachable from the initial marking, i.e., [mI〉. We will use R to

denote the number of reachable markings, i.e., R = |[mI〉|.
The reachability graph of a P/T net is a rooted graph that has a vertex

for each reachable marking and an edge for each possible transition from one

reachable marking to another.

Definition 5.3 A graph is a tuple (V,E, src, trg) where V is a set of vertices,

E is a set of edges, and src, trg : E → V are mappings assigning to each edge

a source and a target, respectively. A rooted graph is a tuple (V,E, src, trg, r)
such that (V,E, src, trg) is a graph and r ∈ V is the root.

Definition 5.4 Let N = (P, T, F,mI) be a P/T net. The reachability graph

of N is the rooted graph (V,E, src, trg, r) defined by:

• V = [mI〉 – the set of nodes is the set of reachable markings.

• E = {(m, t,m′) ∈ V × T × V | m [t〉m′} – the set of edges is the set of

transitions from one reachable marking to another.

• src is given by src(m, t,m′) = m.

• trg is given by trg(m, t,m′) = m′.

• r = mI – the root is the initial marking.

We can only represent a finite reachability graph, but the reachability graph

for a P/T net need not be finite, so we put some restrictions on the P/T net

we consider to ensure a finite reachability graph. The first assumption we

make is that the P/T net under consideration, N = (P, T, F,mI), has a finite

set of places, |P | < ∞, and a finite set of transitions, |T | < ∞. The second

assumption is that the net is k-bounded for some k ∈ N, k > 0, as defined below,

and consider the set of possible markings to be K
P where K = {0, 1, . . . , k}.

Definition 5.5 A P/T net (P, T, F,mI) is k-bounded if and only if for all

m ∈ [mI〉 and for all p ∈ P : m(p) ≤ k.

Although the assumptions above ensure that the reachability graph is finite, it

is still necessary to distinguish between |KP | different states when we calculate

the reachability graph. If we let S denote the number of possible states, S =
|KP |, at least ⌈log2 S⌉ bits are needed per state. Most likely more bits will be

used since the naive representation of a state vector assigns ⌈log2 (k + 1)⌉ bits

per place using |P | · ⌈log2 (k + 1)⌉ bits per state. Our goal is to reduce this to

⌈log2R⌉ bits per state.

5.3 Condensed Graph Representation

We now turn to the problem of mapping the full markings to the condensed

representation. Our approach is to assign to each reachable marking a unique

integer between 0 and R− 1, which can be represented by ⌈log2R⌉ bits. In this

section we describe the data structure used to represent the reachability graph

G = (V,E, src, trg,mI) in this condensed form, and how to construct it from the

sets V and E as calculated by the reachability graph construction algorithm.

Calculating the full reachability graph and then reducing it, defeats the pur-

pose of using a condensed representation. We only describe the algorithm in

this way to present the condensed representation in an uncomplicated setting,

and we will later discuss how to construct the condensed representation on-

the-fly.

82 Chapter 5. Memory-Efficient Reachability Graph Representations

0

1 2

4 53

t5
t1

t0

t0

t1t2

t3

t4

(a) Graph.

E[0]

E[1]

E[2]

E[3]

E[4]

E[5]

2 # (0,1);(1,2)

2 # (2,3);(1,4)

2 # (0,4);(4,5)

1 # (3,0)

1 # (5,0)

(b) Condensed representation.

Figure 5.1: Representation of the reachability graph. The condensed represen-

tation of the graph in (a) is shown in (b). The edge array E[idxM (v)] for vertex v
is written in the form n# (idxT (t0),idxM (v0) ;...; (idxT (tn),idxM (vn)) where

n + 1 is the length of the array and the pairs represent the edges out of v. To

save memory we represent a pointer to the empty array as a grounded pointer.

5.3.1 Representing the Reachability Graph

We want to represent V by the numbers 0 to R − 1. For a marking m ∈ V
we will let idxM (m) ∈ {0, 1, . . . , R − 1} denote the (unique) index of m in this

range. We will represent the initial marking mI by index 0, idxM (mI) = 0.

With this representation of V , we can represent the set of edges as an array,

E, with R entries, where each entry, E[i], points to an array containing the

edges out of the vertex v with index i. The array pointed to by E[i] consists

of a header – a number, indicating the length of the array, so we can later

decode the array – and the edges {(m, t,m′) ∈ E | idxM (m) = i}. Each edge

(m, t,m′) is represented as a pair (idxT (t), idxM (m′)) where the first element

is the index of the transition – we assume some statically defined mapping

idxT : T → {0, . . . , |T | − 1} assigning a number to each transition – and the

second element is the index of the target node of the edge. An example of this

representation is shown in Fig. 5.1.

Each of the pairs in the edge arrays can be represented with ⌈log2 |T |⌉ +
⌈log2R⌉ bits. In addition there is an overhead of one pointer and one number

for each state in V . We assume that all edge arrays can be represented in

main memory and thus that we can represent both the pointer and the number

in a computer word each.1 With this encoding, we can represent the graph

G = (V,E, src, trg,mI) using just 2wR + |E| (⌈log2 |T |⌉+ ⌈log2 R⌉) bits, where

w denotes the number of bits in a computer word. Notice that this efficient

representation is only possible because of our mapping idxM : V → {0, . . . , R −
1}, which saves us from storing any of the R markings explicitly.

From the sets V and E of G, the translation of the reachability graph to the

condensed representation is as one would expect: We build the mapping idxM

as a table mapping nodes to numbers, allocate the array E and the individual

edge arrays, and insert the data in the arrays.

5.3.2 Exploring the Condensed Reachability Graph

The condensed representation for the reachability graph explicitly contains the

transition structure but does not store any information about the markings.

1It is possible to represent both number and pointer in ⌈log2 |E|⌉ bits, but representing both

in a computer word of a fixed size independent of |E| simplifies the constructions for creating the
representation on-the-fly.

5.4. Creating the Condensed Representation On-the-fly 83

1: VISITED := {∅}
2: m := mI

3: DFS(0)
4:

5: proc DFS(i) is

6: if i ∈ VISITED then

7: return

8: {analyse m here}
9: VISITED := VISITED ∪ {i}

10: for all (t, i′) in E[i] do

11: m := m− •t+ t•
12: DFS(i′)
13: m := m+ •t− t•

Figure 5.2: Depth-first traversal of the reachability graph. A global variable m
contains the current marking during the exploration. This marking is updated

before and after each recursive call. The set visited keeps track of the visited

nodes, can efficiently be implemented as a bit vector.

For some applications, such as protocol consistency using language equivalence

[9], this suffices; for other applications, however, we are interested in both

marking and transition information. For such applications we need a method

of recreating the markings from the transition information, without significant

blowup in the memory requirements. The property that we will exploit for this

is the marking equation, m′ = m− •t+ t•, from Def. 5.2.

When we follow an edge (i, t, i′) in the condensed representation, where we

know the marking of i, we calculate the marking of i′ using the marking equa-

tion. If we explore the reachability graph in a depth-first manner, we can even

use the rewriting of the marking equation, m = m′ − t • + • t, to obtain the

marking of i from the marking of i′ when we return along the edge. Exploiting

this, it is possible to do a depth-first graph exploration, storing only one sin-

gle marking explicitly at any one time, while still having the full state vector

available at each visited state. An algorithm for this is shown in Fig. 5.2.

By extending the algorithm in Fig. 5.2 with a table of sub-expressions in-

dexed by 1, . . . , R − 1, it can be used to check Computation Tree Logic (CTL)

as in [27, Sect. 4.1], and by extending the algorithm to use nested depth-first

search [74], it can be adapted to check Linear Temporal Logic (LTL).

5.4 Creating the Condensed Representation

On-the-fly

To calculate the condensed representation on-the-fly we want to construct the

idxM mapping as new markings are calculated, and create the edge array at

E[idxM (m)] as soon as the successors of m have been calculated.

A few subtleties complicate the construction: we do not know the numberR,

and therefore we cannot immediately allocate the array E, nor can we allocate

the individual edge arrays. There is also a problem with storing the numbers

in the representation of the idxM mapping, since we do not know how many

bits are needed to store the numbers {0, . . . , R − 1}. We will assume, however,

that R < 2w, and we can therefore represent the numbers in the table using

computer words. This is potentially a waste of memory, when log2R ≪ w,

but it is not likely to be a bottleneck; the majority of the memory used by the

84 Chapter 5. Memory-Efficient Reachability Graph Representations

idxM mapping (represented as a table mapping full state vectors to numbers)

will be for storing the full state vectors, which will end up using R · ⌈log2 S⌉
bits. Reduction of the memory needed for storing the full state vectors in the

representation of the idxM mapping is addressed in Sect. 5.5.

For managing the array E note that the entries in E are all of size w bits

and do not depend on the total size of [mI〉. We can work on the entries of E
without knowing the full size of E. For handling E itself one possibility is us-

ing a dynamically extensible array [31, Chap. 18.4], expanding and relocating

as needed with an amortised constant time complexity. The dynamic array

approach potentially allocates an array that is too large, but will not allocate

more than twice the required storage, that is, the dynamic array will use be-

tween R ·w+w and 2 ·R ·w+w bits of memory (where the +w is a word needed

to keep track of the size of the array). To be able to relocate the dynamic array,

an additional R · w bits of memory might be needed.

After calculating all the successors of a marking m, we can construct the

edge array for m. At this point we have added all successors of m to the rep-

resentation of idxM , and since we know the number of successors, we know the

size of the edge array. In the edge array we can represent each successor, m′, as

idxM (m′), using w bits. Since we have added all successors ofm to the represen-

tation of idxM , we know the maximal index, M , used in the edge array for m,

so we can actually represent each successor using only ⌈log2M⌉ bits. With this

encoding, the bits allocated per marking will now vary between the different

edge arrays. To decode the arrays we must store this number with the arrays.

We therefore extend the header of the edge arrays, such that it now contains

both the number of edges in the array and also the number of bits allocated per

marking.

5.5 Reducing Peak Memory Usage

When creating the condensed representation of the reachability graph as de-

scribed in Sect. 5.4, memory is wasted because, when the algorithm terminates,

the memory holds both the graph, the set of reachable markings, and the idxM

mapping. In this section we use the sweep-line method [25, 104] to keep peak

memory usage small by deleting entries in the idxM mapping.

5.5.1 The Sweep-Line Method

When constructing the reachability graph, it is neccesary to distinguish be-

tween new states and already visited states. For this we need to store the

already visited states in memory. However, there is no need to store any states

that are not reachable from the unprocessed states. Once a state is no longer

reachable from the unprocessed states, it can be safely removed from memory.

The sweep-line method exploits this observation to delete states, using an

approximation of the reachability relation, called a progress measure. The

progress measure provides an ordering of the markings; states ordered less

than the unprocessed states are assumed to be unreachable from the unpro-

cessed states, and can therefore be deleted.

Definition 5.6 (Def. 3 in [104]) For a P/T net (P, T, F,mI) a progress mea-

sure is a tuple P = (V ,⊑, ψ) where V is a set of progress values, ⊑ is a partial

order of V , and ψ : N
P → V is a mapping assigning a progress value to each

marking. We say that P is monotone if m [∗〉m′ implies ψ(m) ⊑ ψ(m′).

5.5. Reducing Peak Memory Usage 85

For monotone progress measures, the assumption that states with lower

progress values are unreachable from the unprocessed states, is correct. For

non-monotone progress measures, it is no longer safe just to delete states. To

address this problem, we save the target nodes of edges that are not monotonic

– so-called regress edges: (m, t,m′) such that ψ(m) 6⊑ ψ(m′) – as persistent

markings and never delete persistent markings. The states saved as persistent

in a sweep of the state space are either previously seen states or new states;

there is no way for the algorithm to know which. When we see regress edges,

we therefore perform another sweep, using the new persistent states as roots

for the sweep. We repeat this until we no longer find new persistent states. For

details of this algorithm, see [104]. A detailed example of the construction and

optimisation of a progress measure can also be found in [104].

The observation used in the sweep-line method to delete states can also be

used to clean up the idxM mapping. When constructing the condensed graph

representation, we only need to store the index mapping of markings we can

reach from the currently unprocessed states. Using the sweep-line method for

exploring the reachability graph, we can reduce the peak memory usage by

deleting states in the set V and the idxM mapping. Deleting states is only safe

if the progress measure is monotone; otherwise, the condensed graph may be

an unfolding of the full graph. This is treated in Sect. 5.5.2.

The algorithm combining the sweep-line method and the construction of the

condensed graph representation is shown in Fig. 5.3. Like the sweep-line algo-

rithm, this algorithm performs a number of sweeps until it no longer finds new

persistent states (lines 7–8). Each sweep (lines 10–29) consists of processing

unprocessed states in order of their progress measure (lines 14–16), assigning

indices to their previously unseen successors (lines 20–21), and either adding

the new successors to the set of unprocessed states (line 23) or to the set of

persistent states and roots for the next sweep (lines 25–26). When all suc-

cessors of a state are processed, the edge array is updated (line 27) using the

method CREATEEDGEARRAY (lines 31–36) as described in Sect. 5.4, and states

behind the sweep-line are removed from the set V and the index mapping idxM

(lines 28–29).

By using this algorithm we only store a subset of the reachable markings

explicitly while creating the condensed graph. This enables us to construct the

reachability graph, in the condensed representation, in cases where storing all

reachable markings in memory is impossible.

5.5.2 An Unfolding of the Reachability Graphs

When we use a non-monotone progress measure, the reachability graph ob-

tained from the algorithm in Fig. 5.3 is not the reachability graph from Def. 5.4;

rather it is an unfolding of this graph [118, Chap. 13]. For poor choices of

progress measures, this unfolded graph can be much larger than the original

reachability graph, completely eliminating the benefits of reduction. For good

choices of the progress measures, the blowup in size will be manageable and

the condensed representation of nodes more than compensates for the graph

unfolding. It is important to consider the relationship between the unfolded

graph and the original reachability graph, to know which properties are pre-

served by the unfolding.

The unfolding is due to regress edges – edges along which the progress mea-

sure decreases. When following a regress edge we may reach a state which has

previously been explored and since the actual marking has been deleted, we do

not recognise it and explore its successor states again.

86 Chapter 5. Memory-Efficient Reachability Graph Representations

1: V := {mI}
2: Roots := {mI}
3: Persistent := ∅
4: idxM (mI) := 0
5: n := 1
6:

7: while Roots 6= ∅ do

8: SWEEP(Roots , V,Persistent , idxM , n)
9:

10: proc SWEEP(Roots, V,Persistent , idxM , n) is

11: U := Roots

12: Roots := ∅
13: while U 6= ∅ do

14: select m ∈ U s.t. 6 ∃m′ ∈ U : ψ(m′) ⊏ ψ(m)
15: U := U − {m}
16: X := {t,m′ |m [t〉m′}
17: for all (t,m′) ∈ X do

18: if m′ 6∈ V then

19: V := V ∪ {m′}
20: idxM (m′) := n
21: n := n+ 1
22: if ψ(m) ⊑ ψ(m′) then

23: U := U ∪ {m′}
24: else

25: Persistent := Persistent ∪ {m′}
26: Roots := Roots ∪ {m′}
27: E[idxM (m)] := CREATEEDGEARRAY(X, idxM)
28: V := {m ∈ V | ∃m′ ∈ U : ψ(m′) ⊑ ψ(m)} ∪ Persistent

29: idxM := {m 7→ i |m ∈ V ∧ idxM (m) = i}
30:

31: proc CREATEEDGEARRAY is

32: M := max{idxM (m′) | (t,m′) ∈ X}
33: A := allocate 2 · w + |X | · (⌈log2 |T |⌉+ ⌈log2M⌉) bits

34: A.header := (|X |, ⌈log2M⌉)
35: A.edges := (idxT (t), idxM (m′)) for each (t,m′) ∈ X
36: return A

Figure 5.3: The sweep-line method for obtaining a condensed graph represen-

tation.

One can easily define the unfolded graph, Gu, and show that it is bisimilar to

the full reachability graph [118, Chap. 13]. This result is especially interesting

in the context of model checking, since bisimulation is known to preserve CTL*

in the sense of Theorem 5.1, which in turn implies that both CTL and LTL, the

most commonly used temporal logics for model checking, are preserved.

Theorem 5.1 (From [27, Chap. 12]) If G and G′ are bisimilar then for every

CTL* formula φ we have G |= φ ⇔ G′ |= φ.

5.6 Experimental Results

In order to validate and evaluate the performance of the new algorithm a proof-

of-concept implementation has been developed. For the theoretical presenta-

5.6. Experimental Results 87

Table 5.1: Database Replication Protocol.

Full Reachability Graph Sweep-Line based Algorithm

|D| States Avg Memory Time States Peak Memory (%) Time (%)

5 407 146 59,422 0 813 33 8,070 (14) 0

6 1,460 169 246,740 0 2,919 88 26,548 (11) 1 (-)

7 5,105 191 975,055 3 10,209 251 88,777 (9) 7 (233)

8 17,498 214 3,744,572 15 34,995 738 297,912 (8) 35 (233)

9 59,051 237 13,995,087 66 118,101 2,197 993,093 (7) 155 (235)

10 196,832 259 50,979,488 286 393,663 6,572 3,276,80 () 665 (233)

tion in the previous sections we used Place/Transition Petri nets; the tech-

niques introduced, however, generalise to higher level net classes, such as

coloured Petri nets (CPN) [91], in a straightforward manner. The prototype

is build on top of the Design/CPN tool [37], a tool for the construction and

analysis of CPNs. The prototype is implemented in the Standard ML (SML)

programming language [159] and the progress measure is provided by the user

as an SML function.

Since the Design/CPN tool is used for analysing CPN models the markings

of the nets are not multi-sets over places but multi-sets over more complex

data types. Consequently the markings are not integer vectors of length |P |,
but variable-length encodings of the more complex markings. On the edges of

the reachability graph it is no longer sufficient to store transitions, also the

bindings are needed.

The prototype implementation of the new algorithm is slightly simpler than

the algorithm described in this paper. We do not implement the variable-length

numbers for node indices, but represent each index as a four byte computer

word. This greatly simplifies the implementation but uses slightly more mem-

ory for smaller systems and limits the prototype to models with less than 232

states, which is no serious limitation.

All experiments were conducted on a 500Mhz Pentium III Linux PC with

128 Mb of RAM.

Database Replication Protocol. The first example we consider is a data-

base replication protocol [91, Sect. 1.3]. The protocol describes the communi-

cation between a set of database managers for maintaining consistent copies

of a distributed database. When a database manager updates its local copy of

the database it broadcasts an update request to all other database managers

who then perform the update on their local copies and then acknowledge that

the update has been performed. The progress measure for the protocol is based

on the control flow of the database managers and an ordering on the database

managers. See [104] for details.

Table 5.1 shows the performance of full reachability graph generation com-

pared with the new algorithm. The |D| column shows the number of database

managers in the different configurations, the following four columns show the

values for the full reachability graph, and the last four columns show the val-

ues for the new algorithm. In the full reachability graph columns the States

column shows the number of states for each configuration, the Avg column

shows the average number of bytes in the state vector in the different configu-

rations, the Memory column shows the total memory usage in bytes for storing

all states, and the Time column shows the time used for calculating the reacha-

bility graph in seconds. In the sweep-line columns the States column shows the

88 Chapter 5. Memory-Efficient Reachability Graph Representations

Table 5.2: Stop and Wait Communication Protocol.

Full Reachability Graph Sweep-Line based Algorithm

Packets States Avg Memory Time States Peak Memory (%) Time (%)

20 5,286 145 766,470 17 5,286 287 62,759 (8) 24 (141)

40 10,706 146 1,563,076 35 10,706 287 84,726 (5) 50 (143)

60 16,126 146 2,354,396 53 16,126 287 106,406 (5) 77 (145)

80 21,546 146 3,145,716 71 21,546 287 128,086 (4) 103 (145)

100 26,966 146 3,937,036 89 26,966 287 149,766 (4) 129 (145)

number of states explored by the sweep-line algorithm, the Peak column shows

the peak number of states stored during the exploration, the Memory column

shows the number of bytes used for storing the states in the condensed rep-

resentation plus the states in Peak, the number in the parentheses indicates

the memory consumption of the condensed representation as a percentage of

the full representation, the Time column shows the time used for calculating

the condensed graph, and the number in parentheses shows the amount of

time used for calculating the condensed representation as a percentage of the

amount of time used to generate the full representation.

In the database replication protocol all states but the initial state are ex-

plored twice by the sweep-line algorithm, and consequently the condensed

graph has twice as many nodes as the full graph and the time for calculat-

ing the condensed graph is roughly twice as long as the time for calculating the

full reachability graph. The Memory in the sweep-line columns is calculated as

4 ·States+Avg ·Peak since one computer word (4 bytes) is used for representing

each condensed state and Avg · Peak bytes are used for representing the states

on the sweep-line. We only compare the memory usage for storing the states,

as the memory usage for storing the remaining graph structure would be com-

parable for the two methods. Although the unfolded graph generated by the

sweep-line method contains twice as many nodes as the original reachability

graph the memory usage – as seen in the two Memory columns – is significantly

improved. For four database managers the reduction is down to around 20%,

while for nine database managers the reduction is further improved, down to

around 7% of the full representation.

Stop and Wait Communication Protocol. The second example is a stop-

and-wait communication protocol [102]. The protocol is parameterised with

the number of packets to be sent. We use the number of packets successfully

received as a monotone progress measure [25]. The performance is shown in

Table 5.2. Here the # packets column shows the number of packets to be trans-

mitted in the different configurations; the remaining columns have the same

meaning as in Table 5.1.

For this model the peak number of states fully stored in the sweep-line

method does not increase for larger configurations. As the number of packets

increases the total number of states increases, but the number of states with

the same progress measure does not. As for the database replication protocol,

the experiments shows significant memory reduction – from around 8% for

20 packets to around 4% for 100 packets – at the cost of a slight increase in

runtime – an increase about 45%–50% of the runtime of the full reachability

graph algorithm in all configurations.

5.7. Conclusion 89

5.7 Conclusion

In this paper we have presented a condensed representation of the reachability

graph of P/T nets. The condensed graph represents each marking with a num-

ber in {0, 1, . . . , R − 1}, where R = |[mI〉|, and avoids representing markings

explicitly. We have developed an algorithm that constructs this representation

exploiting local information about successor markings only to represent edges

efficiently without knowingR, and dynamic arrays for storing edge information

for each node. Using the sweep-line method we are able to reduce peak memory

usage during the construction of the graph representation. When the progress

measure used is monotone, the graph is isomorphic to the original reachability

graph, and when the progress measure is non-monotone the graph is bi-similar

to the original graph.

We have demonstrated the performance of the new algorithm using two

examples. The chosen examples have a quite clear notion of progress, so the

sweep-line method performs well, and the amount memory used to store the

reduced graphs is significantly less than the amount of memory used to store

the full graphs. The presented algorithm will not perform well on systems with

little or no progress. An example of a system with little progress is the Dining

Philosophers problem. If we use the number of eating philosophers as progress

measure, we will at some time during the construction store nearly all states,

and the memory used for storing the compact representation is overhead. Com-

pared to the amount of memory used for storing the full state vectors, this

amount is not significant, however, and the only real disadvantage is that we

still use extra time for the construction. If the number of reachable states is

close to the number of syntactically possible states, the amount of memory used

for the condensed representation is comparable to the amount of memory used

for the full representation, and little is gained from using the new algorithm.

By exploiting the marking equation of P/T nets, the ability to calculate the

predecessor or successor of a state given a transition, we are able to reconstruct

the markings of the reduced nodes while exploring the graph. In general, when

the predecessors and successors can be deterministically determined, this ap-

proach can be used. If only successors can be calculated deterministically, the

reachability graph can still be traversed and states reconstructed, by saving

the current state on the depth-first stack before processing successors.

The algorithm presented here resembles the approach used in [61], where

the basic sweep-line method (applicable to monotone progress measures only)

was used to translate the reachability graph of a CPN model to a finite state

automaton, which in turn was used to check language equivalence between a

protocol specification and its service specification. In this approach the automa-

ton is constructed by writing edge-information onto a disk before the sweep-line

method garbage collects the edges, and this edge-information is the processed

by another tool to translate it to an automaton. On the disk the states are rep-

resented as numbers, thus reducing memory consumption when the automaton

is constructed from the file.

Using the graph construction algorithm presented in this paper, the po-

tentially expensive step of going through a disk-representation can be avoided

when constructing the language automaton. Furthermore, with the algorithm

in Fig. 5.2 it is possible to traverse the graph reconstructing state information

after the graph is constructed. The results from Sect. 5.5.2, relating the reach-

ability graph to the unfolded graph, can also be used to generalise the method

from [61] to non-monotone progress measures. In [61] the basic sweep-line

method from [25] is used, guaranteeing that the automaton generated repre-

sents the language of the protocol being analysed. The results in Sect. 5.5.2

90 Chapter 5. Memory-Efficient Reachability Graph Representations

ensure that, when using non-monotone progress measures, the unfolded graph

is language equivalent to the original reachability graph.

The new algorithm is designed for explicit state reachability graph analy-

sis. For condensed state representation, such as finite automata [78], or for

symbolic model checking [13,121], where states are represented as e.g., Binary

Decision Diagrams [12], the memory used for storing a set of states does not

depend directly on the number of states in the set, but on regularity in the state

information. Deleting states during the graph construction, as the sweep-line

method does, will not necessarily reduce memory usage. On the contrary, delet-

ing states can actually increase the memory needed to store the set of states.

Combining the new algorithm with symbolic model checking, therefore, does

not appear to be immediately possible.

The new technique reduces the memory usage using knowledge about the

number of reachable states, and complements techniques that are aimed at

efficiently representing arbitrary states from the set of syntactically possible

states. The state representation in SPIN [75], Design/CPN [23], and MARIA

[119], for example, exploit modularity of the system being analysed to share

parts of the state vector between different states. LoLA [151] exploits invari-

ants to avoid storing information that can be derived from the invariant. Using

one or more of these approaches one can represent sets of arbitrary states ef-

ficiently, though at least ⌈log2 S⌉ bits are still needed per state to distinguish

between S syntactically possible states. [57] considers storing sets of markings

efficiently using very tight hash tables, which allows storing sets of states us-

ing less than ⌈log2 S⌉ bits per state, but using the knowledge about the number

of reachable states is not considered. Representing arbitrary states efficiently

benefits the algorithm presented here as well, by reducing the memory needed

for the table mapping states to indices. The reduction differs from probabilis-

tic methods such as bit-state hashing [72, 76] and hash-compaction [155, 172],

where all possible states are, in a sense, mapped onto a range {0, 1, . . . , n}, for

some n, but with a mapping that may not be injective on [mI〉. The states are

in this way also represented in a condensed form, but since hash collisions can

occur, full coverage of the reachability graph cannot be guaranteed.

With the algorithm presented here, the sweep-line method can be used for

checking more general properties than just state properties as in [104]. In

particular, checking CTL* formulae, and thereby CTL and LTL formulae, now

becomes possible. Future work includes using this in case studies.

Chapter 6

The ComBack Method – Extending Hash

Compaction with Backtracking

The paper The ComBack Method—Extending Hash Compaction with Back-

tracking presented in this chapter has been published as a conference pa-

per [T2].

[T2] M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The Com-

Back Method – Extending Hash Compaction with Backtracking. In Proc.

of ATPN’07, volume 4546 of LNCS, pages 446–464. Springer-Verlag,

2007.

The version presented here is identical to the conference paper except for minor

typographical changes.

91

6.1. Introduction 93

The ComBack Method –
Extending Hash Compaction with

Backtracking

Michael Westergaard∗ Lars Michael Kristensen∗†

Gerth Stølting Brodal∗ Lars Arge∗

∗ Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mw,kris,gerth,large}@daimi.au.dk

Abstract

This paper presents the ComBack method for explicit state space ex-

ploration. The ComBack method extends the well-known hash compaction

method such that full coverage of the state space is guaranteed. Each en-

countered state is mapped into a compressed state descriptor (hash value)

as in hash compaction. The method additionally stores for each state an

integer representing the identity of the state and a backedge to a prede-

cessor state. This allows hash collisions to be resolved on-the-fly during

state space exploration using backtracking to reconstruct the full state de-

scriptors when required for comparison with newly encountered states. A

prototype implementation of the ComBack method is used to evaluate the

method on several example systems and compare its performance to related

methods. The results show a reduction in memory usage at an acceptable

cost in exploration time.

6.1 Introduction

Explicit state space exploration is one of the main approaches to verification of

finite-state concurrent systems. The underlying idea is to enumerate all reach-

able states of the system under consideration, and it has been implemented in

computer tools such as SPIN [77], Murφ [85], CPN Tools [C1], and LoLa [150].

The main drawback of verification methods based on state space exploration

is the state explosion problem [161], and several reduction methods have been

developed to alleviate this inherent complexity problem. For explicit state

space exploration these include: methods that explore only a subset of the

state space directed by the verification question [134,160]; methods that delete

states from memory during state space exploration [6, 25, 60]; methods that

store states in a compact manner in memory [57,76,93]; and methods that use

external storage to store the set of visited states [156]. Another approach is

symbolic model checking using, e.g., binary decision diagrams [12] or multi-

valued decision diagrams [96].

Of particular interest in the context of this paper is the hash compaction

method [155, 172], a method to reduce the amount of memory used to store

†Supported by the Carlsberg Foundation and the Danish Research Council for Technology and
Production.

94 Chapter 6. The ComBack Method – Extending Hash Compaction

states. Hash compaction uses a hash functionH to map each encountered state

s into a fixed-sized bit-vector H(s) called the compressed state descriptor which

is stored in memory as a representation of the state. The full state descriptor

is not stored in memory. Thus, each discovered state is represented compactly

using typically 32 or 64 bits. The disadvantage of hash compaction is that

two different states may be mapped to the same compressed state descriptor

which implies that the hash compaction method may not explore all reachable

states. The probability of hash collisions can be reduced by using multiple hash

functions [155], but the method still cannot guarantee full coverage of the state

space. If the intent of state space exploration is to find (some) errors, this is

acceptable. If, however, the goal is to prove the absence of errors, discarding

parts of the state space is not acceptable, meaning that hash compaction is

mainly suited for error detection.

The idea of the ComBack method is to augment hash compaction such that

hash collisions can be resolved during state space exploration. This is achieved

by assigning a unique state number to each visited state and by storing, for each

compressed state descriptor, a list of state numbers that have been mapped

to this compressed state descriptor. This information is stored in a state ta-

ble. Furthermore, a backedge table stores a backedge for each visited state. A

backedge for a state s consists of a transition t and a state number n, such that

executing transition t in the predecessor state s′ with state number n leads to s.
The backedges stored in the backedge table determine a spanning tree rooted

in the initial state for the partial state space currently explored. The backedge

table makes it possible, given the state number of a visited state s, to backtrack

to the initial state and thereby obtain a sequence of transitions (corresponding

to a path in the state space) which, when executed from the initial state, leads

to s, which makes it possible to reconstruct the full state descriptor of s.
A potential hash collision is detected whenever a newly generated state s

is mapped to a compressed state descriptor H(s) already stored in the state

table. From the compressed state descriptor and the state table we obtain the

list of visited state numbers mapped to this compressed state descriptor. Using

the backedge table, the full state descriptor can be reconstructed for each of

these states and compared to the newly generated state s. If none of the full

state descriptors for the already stored state numbers is equal to the full state

descriptor of s, then s has not been visited before, and a hash collision has

been detected. The state s is therefore assigned a new state number which is

appended to the list of state numbers for the given compressed state descriptor,

and a backedge for s is inserted into the backedge table. Otherwise, s was

identical to an already visited state and no action is required.

The rest of this paper is organised as follows. Section 6.2 introduces the

basic notation and presents the hash compaction algorithm. Section 6.3 in-

troduces the ComBack method using a small example, and Sect. 6.4 formally

specifies the ComBack algorithm. Section 6.5 presents several variants of the

basic ComBack algorithm, and Sect. 6.6 presents a prototype implementation

together with experimental results obtained on a number of example systems.

Finally, in Sect. 6.7, we sum up the conclusions and discuss future work. The

reader is assumed to be familiar with the basic ideas of explicit state space

exploration.

6.2 Background

The ComBack method has been developed in the context of Coloured Petri nets

(CP-nets or CPNs) [91], but applies to many other modelling languages for con-

6.2. Background 95

current systems such as PT-nets [143], CCS [123], and CSP [71]. We therefore

formulate the ComBack method in the context of (finite) labelled transition sys-

tems to make the presentation independent of a concrete modelling language.

Definition 6.1 (Labelled Transition System) A labelled transition system

(LTS) is a tuple S = (S, T,∆, sI), where S is a finite set of states, T is a fi-

nite set of transitions, ∆ ⊆ S × T × S is the transition relation, and sI ∈ S
is the initial state.

In the rest of this paper we assume that we are given a labelled transition

system S = (S, T,∆, sI). Let s, s′ ∈ S be two states and t ∈ T a transition.

If (s, t, s′) ∈ ∆, then t is said to be enabled in s and the occurrence (execu-

tion) of t in s leads to the state s′. This is also written s
t
−→ s′. An occur-

rence sequence is an alternating sequence of states si and transitions ti written

s1
t1−→ s2

t2−→ s3 · · · sn−1
tn−1

−−−→ sn and satisfying si
ti−→ si+1 for 1 ≤ i ≤ n − 1. For

the presentation of the ComBack method, we initially assume that transitions

are deterministic, i.e., if s
t
−→ s′ and s

t
−→ s′′ then s′ = s′′. This holds for tran-

sitions in, e.g., PT-nets and CP-nets. In Sect. 6.5 we show how to extend the

ComBack method to modelling languages with non-deterministic transitions.

We use→∗ to denote the transitive and reflexive closure of ∆, i.e., s→∗ s′ if

and only if there exists an occurrence sequence s1
t1−→ s2

t2−→ s3 · · · sn−1
tn−1

−−−→ sn,

n ≥ 1, with s = s1 and s′ = sn. A state s′ is reachable from s if and only if s→∗

s′, and reach(s) = { s′ ∈ S | s →∗ s′ } denotes the set of states reachable from s.
The state space of a system is the directed graph (V,E) where V = reach(sI) is

the set of nodes and E = {(s, t, s′) ∈ ∆ | s, s′ ∈ V } is the set of edges.

The standard algorithm for explicit state space exploration relies on two

data structures: a state table storing the states that have been discovered until

now, and a waiting set containing the states for which successor states have not

yet been calculated. The state table can be implemented as a hash table, and

the waiting set can be implemented, e.g., as a stack or a fifo-queue if depth-

first or breadth-first exploration is desired. The state table and the waiting set

are initialised to contain the initial state and the algorithm terminates when

the waiting set is empty, at which point the state table contains the reachable

states.

The basic idea of the hash compaction method [155, 172] is to use a hash

function H mapping from states S into the set of bit-strings of some fixed

length. Instead of storing the full state descriptor in the state table for each

visited state s, only the compressed state descriptor (hash value) H(s) is stored.

The waiting set still stores full state descriptors. Algorithm 4 gives the ba-

sic hash compaction algorithm [172]. The state table and the waiting set are

initialised in lines 1–2 with the compressed and full state descriptors for the

initial state sI , respectively. The algorithm then executes a while-loop (lines 4-

9) until the waiting set is empty. In each iteration of the while loop, a state s
is selected and removed from the waiting set (line 5) and each of the succes-

sor states s′ of s are calculated and examined (lines 6-9). If the compressed

state descriptor H(s′) for s′ is not in the state table, then s′ has not been vis-

ited before, and H(s′) is added to the state table and s′ is added to the waiting

set. If the compressed state descriptor H(s′) for s′ is already in the state table,

the assumption of the hash compaction method is that s′ has already been vis-

ited. The advantage of the hash compaction method is that the number of bytes

stored per state is heavily reduced compared to storing the full state descriptor,

which can be several hundreds of bytes for complex systems. The disadvantage

is that the method cannot guarantee full coverage of the state space.

96 Chapter 6. The ComBack Method – Extending Hash Compaction

Algorithm 4 Basic Hash Compaction Algorithm

1: STATETABLE.INIT(); STATETABLE.INSERT(H(sI))
2: WAITINGSET.INIT(); WAITINGSET.INSERT(sI)
3:

4: while ¬ WAITINGSET.EMPTY() do

5: s← WAITINGSET.SELECT()

6: for all t, s′ such that (s, t, s′) ∈ ∆ do

7: if ¬ STATETABLE.CONTAINS(H(s′)) then

8: STATETABLE.INSERT(H(s′))
9: WAITINGSET.INSERT(s′)

Figure 6.1 shows an example state space which will also be used when in-

troducing the ComBack method in the next section. Figure 6.1(left) shows the

full state space consisting of the states s1, s2, . . . , s6. The initial state is s1. The

compressed state descriptors h1, h2, h3, h4 have been written to the upper right

of each state. As an example, it can be seen that the states s3, s5, and s6 are

mapped to the same compressed state descriptor h3. Figure 6.1(right) shows

the part of the state space explored by the hash compaction method. The hash

compaction method will consider the states s3, s5, and s6 to be the same state

since they are mapped to the same compressed state descriptor h3. As a result,

the hash compaction method does not explore the full state space.

Several improvements have been developed for the basic hash compaction

method to reduce the probability of not exploring the full state space [155].

None of these improvements guarantee full coverage of the state space. For the

purpose of this paper it therefore suffices to consider the basic hash compaction

algorithm.

6.3 The ComBack Method

The basic idea of the ComBack method is similar to that of the hash com-

paction method: instead of storing the full state descriptors, a hash function is

used to calculate a compressed state descriptor. When using hash compaction,

the main problem is hash collisions, i.e., that states with different full state de-

scriptors (such as s3, s5, and s6 in Fig. 6.1) are mapped to the same compressed

state descriptor. The ComBack method addresses this problem by comparing

the full state descriptors whenever a new state is generated for which the com-

pressed state descriptor is already stored in the state table. This is, however,

done without storing the full state descriptors for the states in the state table.

Instead the full state descriptors of states in the state table are reconstructed

a

b

bb

s1

s2

s6

s4

s3

s5

h3

h3

h4

h3

h2

h1

a

a

a

b

h1

h3

h4

s1

s2

b

s4

s6

h2

a

Figure 6.1: Full state space (left) and state space explored using hash com-

paction (right).

6.3. The ComBack Method 97

on-demand using backtracking to resolve hash collisions. The reconstruction of

full state descriptors using backtracking is achieved by augmenting the hash

compaction algorithm in the following ways:

1. A state number N(s) (integer) is assigned to each visited state s.

2. The state table stores for each compressed state descriptor a collision

list of state numbers for visited states mapped to this compressed state

descriptor.

3. A backedge table is maintained which for each state number N(s) of a

visited state s stores a backedge consisting of a transition t and a state

number N(s′) of a visited state s′ such that s′
t
−→ s.

The augmented state table makes it possible, given a compressed state de-

scriptor H(s) for a newly generated state s, to obtain the state numbers for the

visited states mapped to the compressed state descriptor H(s). For each such

state number N(s′) of a state s′, the backedge table can be used to obtain the

sequence of transitions, t1t2 · · · tn, on some path (occurrence sequence) in the

state space leading from the initial state sI to s′. As we have initially assumed

that transitions are deterministic, executing this occurrence sequence starting

in the initial state will reconstruct the full state descriptor for s′. It is there-

fore possible to compare the full state descriptor of the newly generated state

s to the full state descriptor of s′ and thereby determine whether s has already

been encountered.

Figure 6.2 (left) shows a snapshot of state space exploration using the Com-

Back method on the example that was introduced in Fig. 6.1. The snapshot

represents the situation where the successors of the initial state s1 have been

generated, and the states s2 and s6 are the states currently in the waiting set.

The state number assigned to each state is written inside a box to the upper

left of each state. Figure 6.2 (middle) shows the contents of the state table,

which for each compressed state descriptor hi lists the state numbers mapped

to hi. Figure 6.2 (right) shows the contents of the backedge table. The backedge

table gives for each state number N(s) a pair (N(s′), t), consisting of the state

number N(s′) of a predecessor state s′ and a transition t such that s′
t
−→ s. As

an example, for state number 3 (which is state s6) the backedge table specifies

the pair (1, b) corresponding to the edge in the state space going from state s1
to state s6 labelled with the transition b. For the initial state, which by conven-

tion always has state number 1, no backedge is specified since backtracking

will always be stopped at the initial state.

Assume that s2 is the next state removed from the waiting set. It has a

single successor state s3 which is mapped to the compressed state descriptor

h3 (see Fig. 6.1). A lookup in the state table shows that for the compressed

state descriptor h3 we already have a state with state number 3 stored. We

therefore need to reconstruct the full state descriptor for state number 3 in

a

b

h1

h3

s1

s2

s6

h2

1

2

3 2

h3 3

h1 1

h2

(1, b)

1

2

3

(1, a)

Figure 6.2: Before s2 is processed: state space explored (left), state table (mid-

dle), and backedge table (right).

98 Chapter 6. The ComBack Method – Extending Hash Compaction

a

b

h1

h3

s1

s2

s6

s3

h3

h2

1

2

4

3

a

4h3 3

h1 1

h2 2

(2, a)

1

2

3

(1, a)

(1, b)

4

Figure 6.3: After processing s2: state space explored (left), state table (middle),

and backedge table (right).

order to determine whether s3 is a newly discovered state. The reconstruction

is done in two phases. The first phase uses the backedge table to obtain a

sequence of transitions which, when executed from the initial state, leads to

the state with number 3. A lookup in the backedge table for the state with

state number 3 yields the pair (1, b). Since 1 represents the initial state, the

backtracking terminates with the transition sequence consisting of b. In the

second phase, we use the transition relation ∆ for the system to execute the

transition b in the initial state and obtain the full state descriptor for state

number 3 (which is s6). We can now compare the full state descriptors s3 and

s6. Since these are different, s3 is a new state and assigned state number 4,

which is added to the state table by appending it to the collision list for the

compressed state descriptor h3. In addition s3 is added to the waiting set, and

an entry (2, a) is added to the backedge table for state number 4 in case we

will have to reconstruct s3 later. Figure 6.3 shows the state space explored, the

state table, and the backedge table after processing s2.

The waiting set now contains s3 and s6. Assume that s3 is selected from the

waiting set. The two successor states s4 and s5 will be generated. First, we will

check whether s4 has already been generated. As s4 has the compressed state

descriptor h4, which has no state numbers in its collision list, it is new, and it

is assigned state number 5, and an entry (4, a) is added to the backedge table.

Then we check if s5 is new. State s5 has the compressed state descriptor h3 and

a lookup in the state table yields the collision list consisting of states number

3 and 4. Using the backedge table, we obtain the two corresponding transition

sequences: (1, b) and (2, a)(1, a). Executing the occurrence sequences: s1
b
−→ s6

and s1
a
−→ s2

a
−→ s3 yields the full state descriptors for s3 and s6. By comparison

with the full state descriptor for s5 it is concluded that s5 is new and the state

table, the waiting set, and the backedge table are updated accordingly.

When state s3 has been processed, the waiting set contains the states s4,

s5, and s6. The processing of s4 and s5 does not result in any new states as

these two states do not have successor states. Consider the processing of s6.

We will tentatively denote the full state descriptor for the successor of s6 cor-

responding to s4 by s′ as the algorithm has not yet determined that it is equal

to s4. State s′ has the compressed state descriptor h4 and a lookup in the

state table shows that we have a single state with number 5 stored for h4.

The backedge table is then used starting from state number 5 to obtain the

backedges (4, a), (2, a), and (1, a). Executing the corresponding occurrence se-

quence s1
a
−→ s2

a
−→ s3

a
−→ s4 yields full state descriptor for s4, and we conclude

that this full state descriptor is equal to s′, so s′ has already been visited and no

changes are required to the state table, the waiting set or the backedge table.

Figure 6.4 shows the situation after state s6 has been processed. The thick

edges correspond to the backedges stored in the backedge table. It can be seen

that the backedges stored in the backedge table determine a spanning tree

rooted in the initial state in all stages of the construction (Figs. 6.2–6.4).

6.4. The ComBack Algorithm 99

6.4 The ComBack Algorithm

The ComBack algorithm introduced in the previous section is listed in Algo-

rithm 5. The first part of the algorithm (lines 1–4) initialises the global data

structures. The global variable m is used to enumerate the states, i.e., assign

state numbers to states, and is initially 1 since the initial state is the first state

considered. The state table has an INSERT operation which takes a compressed

state descriptor and a state number and appends the state number to the col-

lision list for the compressed state descriptor. The waiting set stores pairs con-

sisting of a full state descriptor and its number. The state number is needed

when creating the backedge for a newly discovered state. The backedge table

stores pairs consisting of a state number and a transition label. The empty

backedge denoted⊥ is initially inserted in the backedge table for state number

1 (the initial state).

The algorithm then executes a while-loop (lines 6–13) until the waiting set

is empty. In each iteration of the while-loop, a pair, (s, n′), consisting of a state

and its state number is selected from the waiting set (line 7) and each of the

successor states, s′, of s is examined (lines 8–13). Whether a successor state,

s′, is a newly discovered state is determined using the CONTAINS procedure,

which will be explained below. If s′ is a newly discovered state, m is incre-

mented by one to obtain the state number assigned to s′, the state number for

s′ is appended to the collision list associated with the compressed state descrip-

torH(s′), and (n′, t) is inserted as a backedge in the backedge table for the state

s′ which has been given state number m.

The procedure CONTAINS (lines 15–19) is used to determine whether a

newly generated state s′ has been visited before. The procedure looks up

the collision list for the compressed state descriptor H(s′) for s′, and for each

state number, n, in the collision list it checks if s′ corresponds to n using

the MATCHES procedure. If a reconstructed state descriptor is identical to

s′, then s′ has already been visited and tt (true) is returned. Otherwise ff
(false) is returned. The procedure MATCHES (lines 21–22) reconstructs the

full state descriptor corresponding to n using RECONSTRUCT procedure and

returns whether it is equal to s′.

The procedure RECONSTRUCT recursively backtracks using the backedge

table to reconstruct the full state descriptor for state number n. The function

recursively finds the state number of a predecessor using the backedge table

and calculates the full state descriptor using the EXECUTE procedure. The

procedure exploits the convention that the initial state has number 1 to deter-

mine when to stop the recursion. The EXECUTE procedure (not shown) uses

the transition relation ∆ to compute the state resulting from an occurrence of

the transition t in the state s, i.e., if (s, t, s′) ∈ ∆ then EXECUTE(s, t) = s′. This

a

b

h1

h3

h4

s1

s2

b

s3

s4s5

b

s6

h3

h3

h2

1

5

4

2

3

6

a

a

h4

h3 3

h1 1

h2 2

4

5

6

(4, b)

1

2

3

(1, a)

(1, b)

4 (2, a)

5

6

(4, a)

Figure 6.4: After processing s6: state space explored (left), state table (middle),

and backedge table (right).

100 Chapter 6. The ComBack Method – Extending Hash Compaction

Algorithm 5 The ComBack Algorithm

1: m← 1
2: STATETABLE.INIT(); STATETABLE.INSERT(H(sI), 1))
3: WAITINGSET.INIT(); WAITINGSET.INSERT(sI , 1)
4: BACKEDGETABLE.INIT(); BACKEDGETABLE.INSERT(1,⊥)
5:

6: while ¬ WAITINGSET.EMPTY() do

7: (s, n′)← WAITINGSET.SELECT()

8: for all t, s′ such that (s, t, s′) ∈ ∆ do

9: if ¬ CONTAINS(s′) then

10: m← m+ 1
11: STATETABLE.INSERT(H(s′),m)
12: WAITINGSET.INSERT(s′ ,m)
13: BACKEDGETABLE.INSERT(m, (n′, t))
14:

15: proc CONTAINS(s′) is

16: for all n ∈ STATETABLE.LOOKUP(H(s′)) do

17: if MATCHES(n, s′) then

18: return tt

19: return ff

20:

21: proc MATCHES(n, s′) is

22: return s′ = RECONSTRUCT(n)
23:

24: proc RECONSTRUCT(n) is

25: if n = 1 then

26: return sI

27: else

28: (n′, t)← BACKEDGETABLE.LOOKUP(n)
29: s← RECONSTRUCT(n′)
30: return EXECUTE(s, t)

is well-defined since we have assumed that transitions are deterministic.

It can be seen that the ComBack algorithm is very similar to the standard

algorithm for state space exploration. The main difference is that determining

whether a state has already been visited relies on the CONTAINS procedure

which uses the backedge table to reconstruct the full state descriptors before

the comparison with a newly generated state is done. Since the backedge ta-

ble at any time during state exploration determines a spanning tree rooted in

the initial state for the currently explored part of the state space, we can recon-

struct the full state descriptor for any visited state. It follows that the ComBack

algorithm terminates after having explored all reachable states exactly once.

6.4.1 Space Usage.

The ComBack algorithm explores the full state space at the expense of using

more memory per state than hash compaction and by using time on recon-

struction of full state descriptors. We will now discuss these two issues in more

detail. First we consider memory usage. Let wN denote the number of bits

used to represent a state number, and let wH denote the number of bits in a

compressed state descriptor. Let |hi| denote the number of reachable states

mapped to the compressed state descriptor hi. The entry corresponding to hi

6.4. The ComBack Algorithm 101

in the state table can be stored as a pair consisting of the compressed state de-

scriptor and a counter of size wc specifying the length of an array of state num-

bers (the collision list). The total amount of memory used to store the states

whose compressed state descriptor is hi is therefore given by wH +wc + |hi| ·wN .

Considering all compressed state descriptors, the worst-case memory usage oc-

curs if all collision lists have length 1. This means that the worst-case memory

usage for the state table is:

|reach(sI)| · (wH + wc + wN)

We need at least wN = ⌈log2 |reach(sI)|⌉ bits for storing unique numbers for

each state and wc = ⌈log2 |reach(sI)|⌉ bits for storing the number of states in

each collision list. The worst-case memory usage for the elements in the state

table is therefore:

|reach(sI)| · (wH + 2 · ⌈log2 |reach(sI)|⌉)

Consider now the backedge table. The entries can be implemented as an

array where entry i specifies the backedge associated with state number i. If

we enumerate all transitions, each transition in a backedge can be represented

using ⌈log2 |T |⌉ bits. Each state number in a backedge can be represented using

⌈log2 |reach(sI)|⌉ bits. Observing that each reachable state will have one entry

in the backedge table upon termination this implies that the memory used for

the elements in the backedge table is given by:

|reach(sI)| · (⌈log2 |reach(sI)|⌉+ ⌈log2 |T |⌉)

The above means that the total amount memory used for the elements in

the state table and the backedge table is in worst-case given by:

|reach(sI)| · (wH + 3 · ⌈log2 |reach(sI)|⌉+ ⌈log2 |T |⌉)

This is 3 · ⌈log2 |reach(sI)|⌉ + ⌈log2 |T |⌉ bits more per visited state than the

hash compaction method. The ComBack method and the hash compaction

method both store the full state descriptor for those states that are in the

waiting set, but the ComBack method additionally stores the state number

of each state in the waiting set which implies that the ComBack method uses

⌈log2 |reach(sI)|⌉ more bits per state in the waiting set. In reality, we will not

know |reach(sI)| in advance, and we will therefore use a machine word (w bits)

for storing state numbers. If we furthermore assume that we store each tran-

sition using a machine word and use a hash function generating compressed

state descriptors of size wH = w, we use a total of 5 ·w bits or 5 machine words

per state, corresponding to 20 bytes on a 32-bit architecture.

6.4.2 Time Analysis.

Let us now consider the additional time used by the ComBack algorithm for re-

construction of full state descriptors. Let ĥi = {s1, s2, . . . , sn} denote the states

that are mapped to given compressed state descriptor hi and assume that they

are discovered in this order. The first state s1 mapped to hi will not result in a

state reconstruction, but when state sj is discovered the first time it will cause

102 Chapter 6. The ComBack Method – Extending Hash Compaction

a reconstruction of the states s1, s2, . . . sj−1. This means that the number of

reconstructions caused by the first discovery of each of the states is given by:

|ĥi|
∑

j=1

(j − 1) =
|ĥi| · (|ĥi| − 1)

2

Any additional input edge of an already discovered state mapped to hi will

in worst-case cause all other discovered states to be regenerated. In the worst

case, the additional input edges are discovered after all |ĥi| states have been

discovered for the first time. Let in(s) denote the number of input edges for

a state s. The number of reconstructions caused by additional input edges is

then given by:

|ĥi| ·
∑

sj∈ĥi

(in(sj)− 1)

This means that the total number of state reconstructions for a given com-

pressed state descriptor hi is given by:

|ĥi| · (|ĥi| − 1)

2
+ |ĥi| ·

∑

sj∈ĥi

(in(sj)− 1) =
1

2
|ĥi|

2
−
|ĥi|

2
+ |ĥi| ·

∑

sj∈ĥi

in(sj)− |ĥi|
2

= −
1

2
|ĥi|

2
−
|ĥi|

2
+ |ĥi| ·

∑

sj∈ĥi

in (sj)

≤ |ĥi| ·
∑

sj∈ĥi

in (sj)

Let Ĥ = {H(s) | s ∈ reach(sI) } denote the set of compressed state descrip-

tors for the set of reachable states. The number of reconstructions used for the

entire state space exploration can be then be approximated by:

∑

hi∈Ĥ

|ĥi| ·
∑

sj∈ĥi

in (sj) ≤
∑

hi∈Ĥ

max
hk∈Ĥ

|hk| ·
∑

sj∈ĥi

in (sj)

= max
hk∈Ĥ

|ĥk| ·
∑

hi∈Ĥ

∑

sj∈ĥi

in (sj)

= max
hk∈Ĥ

|ĥk| ·
∑

s∈reach(sI)

in (s)

If we assume that we are using a good hash function for computing the

compressed state descriptors, then |ĥi| will in practice be small (at most 2 or

3). This means that the total number of state reconstructions will be close

to the sum of the in-degrees of all reachable states which is equal to number

of edges in the full state space. A poor hash function will cause many state

reconstructions which in turn will seriously affect the run-time performance of

the algorithm. In Sect. 6.6 we will show how to obtain a good hash function in

the context of CP-nets. If the backedge table is implemented as an array, we get

a constant look-up time, and a state can be reconstructed in time proportional

to the length of the path.

The above is summarised in the following theorem where {0, 1}wH denotes

the set of bit strings of length wH .

6.5. Variants and Extensions 103

Theorem 6.1 Let S = (S, T,∆, sI) be a labelled transition system and H : S →
{0, 1}wH be a hash function. The ComBack algorithm in Algorithm 5 terminates

after having explored all reachable states of S exactly once. The elements in the

state table and the backedge table can be represented using:

|reach(sI)| · (wH + 3 · ⌈log2 |reach(sI)|⌉+ ⌈log2 |T |⌉) bits

The total number of state reconstructions during exploration is bounded by:

max
hk∈Ĥ

|ĥk| ·
∑

s∈reach(sI)

in (s)

6.5 Variants and Extensions

In this section, we sketch several variants of the basic ComBack algorithm.

Variants 1 and 2 are aimed at reducing time usage while Variants 3 and 4 are

aimed at reducing memory usage. Variant 5 shows how the ComBack method

can be used for modelling languages with non-deterministic transitions.

Variant 1: Path Optimisation

The amount of time used on reconstruction of a state s is proportional to the

length of the occurrence sequence leading to s stored in the backedge table.

If the state space is constructed in a breadth-first order, the backedge table

automatically contains the shortest occurrence sequences for reconstruction of

states. This is not the case, e.g., when using depth-first exploration. When

the state space is not explored breadth-first, it is therefore preferable to keep

the occurrence sequences in the backedge table short. As an example consider

Fig. 6.4. The occurrence sequences stored in the backedge table for s4 (state

number 5) is s1
a
−→ s2

a
−→ s3

a
−→ s4, which is of length 3. A shorter path s1

b
−→

s6
b
−→ s4 has however been found when s4 was re-discovered from s6. When

re-discovering s4 from s6, it is therefore beneficial to replace the backedge (4, a)

stored for s4 to (3, b) such that the shorter occurrence sequence s1
b
−→ s6

b
−→ s4 is

stored in the backedge table. It is easy to modify the algorithm to make such

simple path optimisations by storing the depth of each state in the waiting set

along with the full state descriptor and state number. The depth of a state s
stored in the waiting set is the length of the occurrence sequence through which

s was explored. Whenever a state s is removed from the waiting set in line 7 of

Algorithm 5, we obtain the depth d of s. By incrementing d by one, we obtain

the depth of each successor state s′ of s. If the RECONSTRUCT procedure (see

lines 24–30 in Algorithm 5) reconstructs s′ based on the backedge table using

an occurrence sequences of length greater than d+ 1, then the backedge stored

for s′ should be changed to point to the state number of s since going via s
results in a shorter occurrence sequence. It is easy to see that the above path

optimisation shortens the occurrence sequences stored in the backedge table,

but it does not necessary yield the shortest occurrence sequences.

Variant 2: Caching of Full State Descriptors

Another possibility of reducing the time spent on state reconstruction is to

maintain a small cache of some full state descriptors for the visited states. As

an example, consider Fig. 6.4 and assume that we have cached state s3 (with

state number 4) during exploration. Then we would not need to do backtracking

104 Chapter 6. The ComBack Method – Extending Hash Compaction

for state number 4 when we generate state s5 – we can immediately see that

even though states s3 and s5 both have the compressed state descriptor h3, the

cached full state descriptor for s3 is not the same as the full state descriptor for

s5. Caching s3 also yields an optimisation when we generate state s4 (with state

number 5) when processing s6. In this case we would not have to backtrack all

the way back to the initial state, but as soon as we encounter state number

4 in the backtracking process we can obtain the full state descriptor for s3
(since it is cached), and it suffices to execute the occurrence sequence s3

a
−→ s4

to reconstruct the full state descriptor for s4. This shows that caching also

optimises state reconstruction for non-cached states. Another way to further

optimise backtracking is to re-order the states in the collision lists according

to some heuristics that attempt to predict which state is most likely to be re-

visited. A simple heuristic is to move a state number to the front of the collision

list every time we re-encounter it.

Variant 3: Backwards State Reconstruction

Some modelling languages, including PT-nets and CP-nets, allow transitions to

be executed backwards, i.e. we can obtain a function ∆−1 such that ∆−1(s′, t) =
s ⇐⇒ (s, t, s′) ∈ ∆. This can be used to execute occurrence sequences from

the backedge table backwards, starting from the full state descriptor of a newly

generated state s′, in order to determine whether s′ has already been visited.

This has two benefits. Firstly, we do not need to store the occurrence sequence

obtained from the backedge table in memory, but can just iteratively look up

a backedge in the backedge table and transform the current state using ∆−1.

Secondly, the backtracking process may stop early if we encounter an invalid

state. What qualifies as an invalid state depends on the modelling formalism.

A simple implementation for PT-nets and CP-nets is to consider states to be

invalid if there is a negative amount of tokens on a place (which may happen

when transitions are executed backwards).

Variant 4: Reconstruction of Waiting Set States

In the basic ComBack algorithm we store the full state descriptors for the

states in the waiting set. This may take up a considerable amount of mem-

ory. It can be observed that we do not actually need to store the full state

descriptor for states in the waiting set. It suffices to store the state number as

the full state descriptor can be reconstructed from the state number and the

backedge table when the state number is selected from the waiting set. This

reduces memory usage at the expense of having to make up to |reach(sI)| extra

reconstructions of states. We can alleviate this, however, if we do depth-first

exploration and cache at least the last state that was processed.

Variant 5: Non-deterministic Transition

For modelling languages with non-deterministic transitions we may have

(s, t, s′) ∈ ∆ ∧ (s, t, s′′) ∈ ∆ such that s′ 6= s′′. This means that we may not have

a single unique state when executing occurrence sequences obtained from the

backedge table, and a state reconstruction procedure is required that operates

on sets of states. Consider the reconstruction of a visited state with number

n. From the backedge table we obtain (as before) a sequence of backedges

(nm, tm) · · · (ni, ti) · · · (n2, t2)(n1, t1) where n1 = 1 (the initial state). In the i’th
step of the reconstruction process when considering the backedge (ni, ti), now

have a set of states S1 containing the states that can be reached by executing

6.6. Experimental Results 105

the transition sequence t1t2ti−1 starting in the initial state. From this set we

obtain a new set of states S2 which is the set of states obtained by executing

ti in those states of S1 where ti is enabled. To reduce the size of the set S2 we

observe that S2 should only contain those states that has the same compressed

state descriptor as state number ni+1. The compressed state descriptor for

state number ni+1 can be obtained from the state table. With a good hash func-

tion H , this is expected to keep the size of the sets of states considered during

state reconstruction small.

Revised MATCHES and RECONSTRUCT procedures for Variant 5 are shown

in Algorithm 6. The RECONSTRUCT procedure is changed to return a set of

possible states matching the state number n, so MATCHES is changed to check

if s is among those (line 2). The only state corresponding to state number 1 is

the initial state (line 6). In line 8 we look up the number of a predecessor state

in the backedge table and recursively reconstruct all states that can match that

state (line 9). Then we calculate all possible successors of those states (line 10).

After that we check that the state number we are looking for, n, is actually in

the collision list of the compressed state descriptor of all calculated successors

(line 11), and finally return the result. The algorithm will work without the

weeding of states in line 11, but at the expense of considering larger state sets.

Algorithm 6 MATCHES and RECONSTRUCT procedures for Variant 5

1: proc MATCHES(n, s) is

2: return s ∈ RECONSTRUCT(n)
3:

4: proc RECONSTRUCT(n) is

5: if n = 1 then

6: return {sI}
7: else

8: (n′, t)← BACKEDGETABLE.LOOKUP(n)
9: S1 ← RECONSTRUCT(n′)

10: S2 ← {s2 ∈ S | ∃s1 ∈ S1 : (s1, t, s2) ∈ ∆}
11: S3 ← {s2 ∈ S2 |n ∈ STATETABLE.LOOKUP(H(s2))}
12: return S3

6.6 Experimental Results

A prototype of the basic algorithm as described in Sects. 6.3 and 6.4 has been

implemented in CPN Tools [C1] which supports construction and analysis of

CPN models [91]. The algorithm is implemented in Standard ML of New Jersey

(SML/NJ) [159] version 110.60.

The STATETABLE is implemented as a hash mapping (using lists for han-

dling collisions) and the BACKEDGETABLE is implemented as a dynamic exten-

sible array. This ensures that we can make lookups and insertions in (at least

amortized) constant time. The collision list is implemented using SML/NJ’s

built-in list data type, which is a linked list (rather than an array with a

length). A more efficient implementation of the STATETABLE could be obtained

using very tight hashing [57]. This would allow us to remove some redundant

bits from the compressed state descriptor. We have implemented both depth-

first exploration (DFS) and breadth-first exploration (BFS).

The compressed state descriptors calculated by the hash function as well as

the state numbers are 31-bit unsigned integers as SML/NJ uses the 32nd bit for

garbage collection. The hash function used is defined inductively on the state

106 Chapter 6. The ComBack Method – Extending Hash Compaction

of the CPN model. In CP-nets, a state of the system is a marking of a set of

places. Each marking is a multi-set over a given type. We use a standard hash

function for each type. We extend this hash function to multi-sets by using

a combinator function, which takes two hash values and returns a new hash

value. We extend the hash functions on markings of places to a hash function of

the entire model by using the combinator function on the place hash functions.

We also implemented caching of full state descriptors as explained in

Sect. 6.5. The caching strategy used is simple: we use a hash mapping from

state numbers to full state descriptors, which does not account for collisions of

hash values. That way, if we allocate a hash mapping of, say, size 1000, we can

store at most 1000 full state descriptors in the cache. We have not implemented

re-ordering of states in the collision lists, as the collision lists have length at

most 2 (with two exceptions) for all our examples.

We use a test-suite consisting of three kinds of models: small examples,

medium-sized examples and real-life applications. In the first category, we

have three models: a model of the dining philosophers system (DP), a model

of replicating database managers (DB), and a model of a stop-and-wait net-

work protocol (SW). In the second category, we have a model of a telephone

system (TS). In the last category, we have a model of a protocol (ERDP) for

distributing network prefixes to gateways in a network consisting of standard

wired networks and wireless mobile ad-hoc networks [103]. All of the mod-

els are parametrised: DP by the number of philosophers, DB by the number of

database managers, SW by the number of packets transmitted and the capacity

of the network, TS by the number of telephones, and ERDP by the number of

available prefixes and the capacity of the network. We will denote each model

by its name and its parameter(s), e.g. DP22 denotes DP with 22 philosophers

and ERDP6,2 denotes the ERDP protocol with six prefixes and a network ca-

pacity of two.

We have evaluated the performance of the ComBack method without cache,

denoted by ComBack, and with cache of size n, denoted ComBack n. We have

compared the ComBack method with implementations of basic hash

compaction [172], bit-state hashing [76] by means of double hashing [38] which

uses a linear combination of two hash functions to compute, in this case, 15

compressed state descriptors. Instead of storing the compressed state descrip-

tors, like hash compaction, bit-state hashing uses the values to set bits in a

bit-array. Finally, we compare the ComBack method to standard state space

exploration of the full state space using a hash table for storing the full state

descriptors. For each model, we have measured how much memory and how

much CPU time was used to conduct the state space exploration. Memory is

measured by performing a full garbage collection and measuring the size of the

heap. This is done every 0.5 second or 40 states, whichever comes last. As

garbage collection takes time, the CPU time used is measured independently.

We have measured the time three times and used the average as the result.

Table 6.1 shows the results of the experiments. For each model (column 1)

and each exploration method (column 2), we show the number of nodes (states)

and arcs explored (columns 3 and 4). We also show the CPU time spent (in sec-

onds) and the amount of space (memory) used (in mega-bytes) for a depth-first

traversal (DFS) and a breadth-first traversal (BFS) of the state space (columns

5, 7, 10, and 12). In addition we show how much time and memory is used

relative to traversal using a standard exploration using DFS (columns 6, 8, 11,

and 13) and how much memory (in bytes) is used per state (columns 9 and 14).

We note that for each model, independent of the reduction technique, ei-

ther DFS performs better memory-wise than BFS or vice versa. For the more

realistic examples, TS and ERDP, DFS is slower than BFS. This is due to the

6.6. Experimental Results 107

Table 6.1: Experimental results

m
od

el

m
et

hod

nod
es

arc
s

DFS BFS

time space time space
sec % Mb % /state sec % Mb % /state

D
P

2
2

ComBack 39604 481625 2791 10337 23.0 97 608 59 219 9.8 42 260
ComBack 100 39604 481625 800 2963 23.0 98 610 56 207 9.9 42 261
ComBack 1000 39604 481625 98 363 23.6 100 625 57 211 10.6 45 281
Hash compaction 39603 481609 25 93 20.8 88 550 26 96 8.4 35 222
Bit-state 39604 481609 28 104 32.0 135 846 29 107 20.0 85 531
Standard 39604 481625 27 100 23.6 100 625 27 100 14.3 61 380

D
B

9

ComBack 59051 314947 60 214 4.5 10 80 63 225 11.9 28 212
ComBack 100 59051 314947 50 178 4.7 11 83 51 182 12.1 28 214
ComBack 1000 59051 314947 48 171 5.5 13 98 44 157 12.9 30 229
Hash compaction 59049 314937 25 89 1.4 3 25 27 96 10.1 23 179
Bit-state 59051 314947 29 104 12.3 28 218 33 118 21.3 49 379
Standard 59051 314947 28 100 43.3 100 769 28 100 43.4 100 770

D
B

1
0

ComBack 196832 1181001 286 44 15.4 9 82 307 48 43.1 25 230
ComBack 100 196832 1181001 247 38 15.6 9 83 264 41 43.3 25 231
ComBack 1000 196832 1181001 240 37 16.6 10 89 250 39 44.4 26 236
Hash compaction 196798 1180790 118 18 4.9 3 26 133 21 36.8 21 196
Bit-state 196832 1181001 138 21 12.3 7 66 152 24 46.3 27 247
Standard 196832 1181001 643 100 174.0 100 927 693 106 174.0 100 927

S
W

7
,4

ComBack 215196 1242386 115 319 17.5 41 85 115 319 20.1 47 98
ComBack 100 215196 1242386 68 189 17.6 41 86 100 278 20.2 47 98
ComBack 1000 215196 1242386 64 178 17.9 42 87 93 258 20.6 48 100
Hash compaction 214569 1238803 33 92 5.2 12 25 37 103 9.8 23 48
Bit-state 215196 1242386 41 114 12.3 28 60 46 128 18.3 43 89
Standard 215196 1242386 36 100 43.0 100 210 40 100 43.1 100 210

T
S

5

ComBack 107648 1017490 3302 6115 51.4 84 500 103 191 17.6 29 172
ComBack 100 107648 1017490 933 1728 51.4 83 501 102 189 17.7 29 172
ComBack 1000 107648 1017490 207 383 51.9 85 506 107 198 18.4 30 180
Hash compaction 107647 1017474 50 93 45.7 75 445 52 96 14.7 24 143
Bit-state 107648 1017490 58 107 55.4 90 540 62 115 25.8 42 251
Standard 107648 1017490 54 100 61.2 100 596 57 106 45.0 73 438

E
R

D
P

6
,2

ComBack 207003 1199703 986 865 29.1 33 147 867 761 35.7 41 181
ComBack 100 207003 1199703 259 227 29.0 33 147 481 422 35.8 41 181
ComBack 1000 207003 1199703 205 180 29.6 34 150 402 353 36.4 42 184
Hash compaction 206921 1199200 106 93 5.1 6 26 114 100 18.6 21 94
Bit-state 207003 1199703 123 108 12.3 14 62 135 118 27.3 31 138
Standard 207003 1199703 114 100 87.4 100 443 131 115 88.5 101 449

E
R

D
P

6
,3

ComBack 4277126 31021101 42711 - 572.3 - 140 65354 - 708.1 - 174
ComBack 100 4277126 31021101 18043 - 571.2 - 140 - - - - -
ComBack 1000 4277126 31021101 23084 - 571.7 - 140 - - - - -
Hash compaction 4270926 30975030 3341 - 113.5 - 28 20512 - 403.6 - 99
Bit-state 4277125 31021091 3732 - 12.1 - 3 17481 - 347.9 - 85
Standard - - - - - - - - - - - -

fact that the models resemble real systems and have more complex behaviour,

which leads to very long occurrence sequences in the backedge table, and thus

impacts the performance of the ComBack method. If we instrument the Com-

Back method with even a small cache when using DFS, or if we use BFS, pro-

cessing is much faster for realistic examples. We see that the ComBack method

uses quite a bit more memory than the 5 machine words predicted in the pre-

vious section. One cause for this is that the calculation in Sect. 6.4 did not take

the WAITINGSET into account and only considered the elements of the state

table and the backedge table, not the tables themselves. Furthermore, SML is

not very memory-efficient, doubling usage. We also note that the standard ex-

ploration as well as the ComBack method using BFS were not able to complete

due to lack of memory for the ERDP6,3 model. The hash compaction bit-state

hashing were also not able to explore all states for this example (as can be seen

in the nodes column of Table 6.1). This means we are comparing methods guar-

anteeing full coverage with methods that do not, so while the hash compaction

and bit-state hashing methods seem to perform well, they do so at a cost.

108 Chapter 6. The ComBack Method – Extending Hash Compaction

Figure 6.5 shows charts depicting memory and time usage relative to stan-

dard DFS exploration (i.e. one chart for columns 5 and 7 and another chart

for columns 10 and 12). These charts allow us to better understand how the

different exploration methods perform compared to each other, independent of

the example. We see that the values fall into 7 rectangles corresponding to 6

different exploration methods and an abnormal experiment. Rectangle 1: stan-

dard exploration; all results are near 100% on both axes, showing that when

we store full state descriptors in a hash table, it does not matter whether we

use DFS or BFS. Rectangle 2: hash compaction; all are near 100% on the time

axis and between 2% and 100% (DFS) or 20% and 40% (BFS) on the mem-

ory axis, showing that hash compaction uses as much time as storing the full

state descriptors, but significantly less space. Rectangle 3: bit-state hashing;

all are near 100% time-wise, but slightly higher than 1 and 2 (this is probably

because we have to calculate two hash values instead of just one). All range

between 15% and 150% memory-wise. The bit-state hashing method consis-

tently uses 12.5 mega-bytes plus the size of the waiting set, so it performs well

memory-wise on models with large state spaces, but performs poorly on models

with small state spaces. This means that memory optimisations are possible,

but customisation is required by the user. All the show models are reason-

able large, leading to reasonable performance of bit-state hashing. Rectangle

4: ComBack without cache; all are above 150% time-wise and between 10% and

100% (DFS) or 25% and 40% (BFS) memory-wise. Time is also better bounded

in the BFS results. This indicates that ComBack without cache yields a reduc-

tion (it is never above 100%), and when using BFS we have better control of

the time and memory used. DFS makes it possible to save more memory, but

can be very costly time-wise, and sometimes we do not save any memory at

all (e.g. in the Dining philosophers example, where we can end up with most

of the state space in the waiting set). Rectangles 5+6: ComBack with cache;

these use slightly more memory but less time than 4, in particular in the DFS

case. More cache yields more memory and less time used, but the differences

are not that large, and even a small cache yields great optimizations in time

compared to the ComBack method with no cache at all. Rectangle 7: DB10;

these points fall outside of all the other boxes. Inspection of the data in Ta-

ble 6.1 shows that the DB10 example has irregular behaviour, as exploration

using the standard exploration is slow as a full state descriptor for this model

is large, and thus the SML/NJ garbage collector is invoked often. This yields a

performance penalty and causes all other experiments, as they are relative to

the standard exploration, to fall outside the other boxes. ERDP6,3 is not shown

as the standard exploration was unable to terminate.

All of the shown experiments have been performed using a hash-function

generating 31-bit compressed state descriptors. We have also tested the

method using a hash function generating 62-bit compressed state descriptors,

but have not shown those results, as the time usage is the same but more

memory is consumed, as the 31-bit hash function causes few collisions. We

have verified the quality of the hash-function by calculating the lengths of the

collision lists for all examples. The worst case is example SW7,4, where there

are 214009 collision lists of length 1, 592 lists of length 2 and 1 list of length

3, so 99.7 % of the collision lists have the minimum length. It also means that

hash compaction misses at least 1 ·592+2 ·1 = 594 states due to hash collisions.

6.7. Conclusions and Future Work 109

1

7

6

5

4

3
2

 10
 1000

lo
g(

tim
e

%
)

log(memory %)

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

 10 1

 100000

 10000

 1000

 100

 100

1

7

6

5

4

3

2

 10

ComBack
ComBack 100

ComBack 1000
Hash compaction

Bit−state
Standard

lo
g(

tim
e

%
)

 1000 100 10

 1000

 100

log(memory %)

Figure 6.5: Time and memory usage for the various reduction techniques using

DFS exploration (top) and BFS exploration (bottom). Values are relative to

corresponding values for standard depth-first exploration.

6.7 Conclusions and Future Work

In this paper we have presented the ComBack method for alleviating the state

explosion problem. The basic idea of the method is to augment the hash com-

paction method with a backedge table that makes it possible to reconstruct full

state descriptors and ensure full coverage of the state space. We have made

a prototype implementation of the method in CPN Tools and our experimental

results demonstrate that the method (as expected) uses more time and memory

than hash compaction, but less memory than ordinary state space exploration.

The advantage of the ComBack method is that it guarantees full coverage of

the state space, unlike related methods such as hash compaction and bit-state

110 Chapter 6. The ComBack Method – Extending Hash Compaction

hashing. From a practical viewpoint one could therefore use methods such as

hash compaction in early phases of a verification process to discover errors, and

when no further errors can be detected, the ComBack method could be used for

formal verification of properties.

In this paper we have not discussed verification of properties using the Com-

Back method. It can be observed that the method explores the full state space

without mandating a particular exploration order. Furthermore, the state re-

construction that occurs when checking whether a state has already been vis-

ited can be made fully transparent to the verification algorithm being applied

in conjunction with the state space exploration. This makes the method com-

patible with most on-the-fly verification algorithms (e.g., verification of safety

properties and on-the-fly LTL model checking [166]). The ComBack method is

also compatible with off-line verification algorithms such as CTL model check-

ing [106] since the backedge table allows the reconstruction of any of the full

state descriptors which in turn allows the forward edges between states to be

reconstructed. Alternatively, we can simple store the forward edges in an ad-

ditional table during state space exploration.

The ComBack method opens up several areas for future work. One topic

is the integration of verification algorithms as sketched in the previous para-

graph. Future work also includes implementation of the additional variants

presented in Sect. 6.5, and the development and evaluation of caching strate-

gies and organisation of collision lists to reduce the time spent on state re-

construction. It would also be interesting to compare the ComBack method to

other complete techniques such as state caching [60]. Another important topic

is to explore the combination of the ComBack method with other reduction

methods. For this purpose, partial-order methods [134, 160] appear particu-

larly promising as they reduce the in-degree of states which in turn will lead

to a reduction in the number of state reconstructions.

Chapter 7

The BRITNeY Suite Animation Tool

The paper The ComBack Method – Extending Hash Compaction with Back-

tracking presented in this chapter has been published as a conference pa-

per [T3]. The conference paper is a shortened and less technical version of

the workshop paper [C6]. The BRITNeY Suite, described in these papers, is

available from the BRITNeY Suite homepage [C2].

[T3] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool.

In Proc. of ICATPN’06, volume 4024 of LNCS, pages 431–440. Springer-

Verlag, 2006.

[C2] M. Westergaard. BRITNeY suite website. Online wiki.daimi.au.dk/
britney/.

[C6] M. Westergaard and K.B. Lassen. Building and Deploying Visualizations

of Coloured Petri Net Models Using BRITNeY animation and CPN Tools.

In Proc. of Sixth CPN Workshop, volume PB-576 of DAIMI, pages 119–

136, 2005.

The version presented here is identical to the conference paper except for minor

typographical changes.

111

7.1. Introduction 113

The BRITNeY Suite Animation Tool

Michael Westergaard and Kristian Bisgaard Lassen

Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {mw,k.b.lassen}@daimi.au.dk

Abstract

This paper describes the BRITNeY suite, a tool which enables users to

create visualizations of formal models. BRITNeY suite is integrated with

CPN Tools, and we give an example of how to extend a simple stop-and-

wait protocol with a visualization in the form of message sequence charts.

We also show examples of animations created during industrial projects to

give an impression of what is possible with the BRITNeY suite.

7.1 Introduction

Colored Petri nets (CP-nets or CPN) [91] have proved their usefulness in model-

ing and understanding complex systems [10,103,112,142], e.g., for verification

of existing behavior or requirements engineering of needed behavior.

However, when using CP-nets, only people familiar with the formalism are

able to truly understand the model of the system. A domain expert may under-

stand a CP-net, when introduced to CP-nets in general and when the particular

CP-net is explained by the model developer, but the domain expert is seldom

able to talk back, say precisely what is wrong with the model, and offer sug-

gestions to fix the model of the system, because of lack of technical expertise

with the formalism. CP-net models of systems are prone to errors if they can

not be fully understood and validated by someone with domain knowledge. The

contribution of the BRITNeY1 suite animation tool is to give a visualization of

the state and actions of a CP-net so the domain expert can validate the model.

In this paper we present the BRITNeY suite [C2] which introduces an an-

imation layer for CP-nets. BRITNeY suite provides a uniform way to imple-

ment, integrate, and deploy visualizations of CP-nets and has a pluggable ar-

chitecture which makes it possible to write customized plug-ins to animate the

model in addition to more than a dozen predefined plug-ins. The BRITNeY

suite has already been used successfully to animate a network protocol [T4],

to animate a workflow process in a bank for the purpose of requirements en-

gineering [94] and to visualize how patient, nurse and doctor work together

with a system that dispenses sedatives, again for the purpose of requirements

engineering [114].

Even though BRITNeY suite is designed with CPN Tools in mind, it is possi-

ble to integrate the tool with any executable formalism as the interface to CPN

Tools is based on well-known public standards. For example the tool has been

used successfully to visualize the execution of a timed automaton [7] model

as well as the reachability graphs of systems created using a subset of the π-

calculus [127], bigraphical reactive systems [125], finite and timed automata,

1An abbreviation for Basic Real-time Interactive Tool for Net-based animation.

114 Chapter 7. The BRITNeY Suite Animation Tool

observes

invokes

Controller Model View

alerts
changes

Figure 7.1: Architectural overview of the model-view-controller design pattern.

and Coloured Petri nets. Also goto-graphs of Java programs have been visual-

ized using the BRITNeY suite.

The paper is structured as follows. In Sect. 7.2 we give a brief overview

of the architecture of the BRITNeY suite. In Sect. 7.3 we demonstrate how to

add a message sequence chart visualization to a CP-net of a simple stop-and-

wait protocol. Sect. 7.4 contains some example visualizations created as part

of industrial projects. In Sect. 7.5 we mention related work and outline some

of the new features planned for BRITNeY suite.

7.2 Architectural Overview

A well-known design pattern from the object-oriented world is the model-view-

controller (MVC) design pattern [54]. In the MVC design pattern, three par-

ticipants collaborate to provide the implementation of an application, namely

a model, a view, and a controller, see Fig. 7.1. The model contains the state

of the system, the view is a (graphical) representation of the current state of

the model, and the controller implements the behavior of the system. The view

may initiate actions in the controller.

The idea behind the BRITNeY suite is to use a CP-net (or any other formal

executable model) to model the state and behavior of the system (the model

and controller), and use BRITNeY suite for visualizing the system (view). This

division is natural as places of CP-nets are used to model the state of a system

and transitions the behavior.

In Fig. 7.2, we see how BRITNeY suite is integrated with CPN Tools [33]

to provide simulation-based visualizations and animations. CPN Tools itself is

split into two components, an editor and a simulator. The animation tool, in

the right part of the figure, communicates with CPN Tools using a standard Re-

mote Procedure Call protocol, called XML-RPC [170], in order to allow vendors

of other tools to directly integrate their tools with BRITNeY suite. BRITNeY

suite uses plug-ins to make the actual visualizations, which makes it easy to

create your own animations. 15 plug-ins are currently available in the tool.

Table 7.1 lists each plug-in with a short description. Over time, more plug-ins

will be added.

BRITNeY does not contain a fixed set of plug-ins as plug-ins can be added

and removed, so stubs are generated on-the-fly as needed by using the reflec-

tion mechanism in Java to inspect the signatures of the plug-ins. The stubs

make sure that values are passed correctly to the appropriate Java object’s

method and takes care of passing the return value back to the caller. Stubs are

generated automatically by the stub generator component of BRITNeY suite.

The stubs are injected into CPN Tools and are available as regular functions

in the inscription language of CPN Tools, namely Standard ML (SML) [126],

which allows the modeler to use the animation plugins anywhere SML expres-

sions are allowed.

7.3. Using BRITNeY to Generate Message Sequence Charts 115

server

simulator
CPN
editor

Animation
plugins

Stub
generator

Animation
stubs

XML−RPC
client

SceneBeans

MSC
etc...CPN Tools

BRITNeY
suite

XML−RPC

CPN

Figure 7.2: A more detailed view of the integration of the animation tool with

CPN Tools.

Table 7.1: Plug-ins for the BRITNeY suite. The first group of plug-ins is for

creating various charts, the second group is for displaying directed graphs, the

third group is for interacting with a user and the final group contain plug-ins

that do not fit in any group.

Name Description

AreaChart For visualizing data values by filling the area below them

GanttChart For drawing Gantt charts

Histogram For drawing histograms

MSC For drawing message sequence charts

PieChart For drawing pie charts

PieChart3D For drawing 3D pie charts

StepChart Similar to a histogram

XYChart For visualizing data values as points

Graph For drawing 2D graphs

Graph3D For drawing 3D graphs

GetString For getting short text-messages from the user

ShowString Display short text-messages to the user

DataStore Storage for simple data-types

Report Nice presentation of data

SceneBeans For displaying and interacting with a SceneBeans [149] animation

The modeler will often want to update the visualization when a transition

occurs. This is done by calling the stubs in code segments that are special

transition inscriptions allowed by CPN Tools. A code segment is executed when

the transitions it belongs to occurs. It consists of input, output, and action

parts. The input and output parts make it possible to receive input from the

model and to provide situmli back to the model respectively. This makes it

possible to, e.g., invoke a stub with values dictated by tokens and to generate

new tokens from the result of executing the stub.

7.3 Using BRITNeY to Generate

Message Sequence Charts

In this section we will describe how to show a simulation of a CP-net as a

message sequence chart (MSC), i.e. generate a chart which displays the simu-

lation of the CP-net in terms of events being passed between processes. This is

116 Chapter 7. The BRITNeY Suite Animation Tool

(id,data)

id+1

id

id id+1

(id,data)

(id,"")

(id,data)

id

(id,data)(id,data)

Drop

Receive
Ack

Receive
Data

Send
Data

Receive
Id

1`1

ID

Network 2

PACKET

Next
Id

1`1

ID

Network 1

PACKET

Out
Buffer

1`(1,"BRITNeY")++
1`(2," is coo")++
1`(3,"l!!!!!!")

PACKET

Figure 7.3: CP-net of a stop-and-wait protocol.

instead of, e.g., in CPN Tools where simulation is shown as enabling of transi-

tions, and tokens being consumed and generated when transitions occur. The

description is fairly high-level, and a more detailed and technical description

can be found in [C6], but the reader is assumed to have basic knowledge of

object oriented programming and an ability to read Java and SML code.

7.3.1 Model

The model that we will use in this paper is a very simple stop-and-wait protocol

as seen in Fig. 7.3. The model consists of three parts: 1) A sender who can Send
Data from the Out Buffer with a packet number from Next Id. Also the sender

can Receive Ack thereby updating the token on Next Id. 2) A network that can

Drop packets that are sent to the receiver from place Network 1. Network 2
contains acknowledgments that the receiver is sending back to the sender. 3)

The receiver can Receive Data and update the Receive Id that the next packet

must have.

7.3.2 Adding the MSC primitives in CPN Tools

MSCs are well-known to protocol engineers, and it is therefore a good idea to

be able to present the execution of a CP-net as an MSC. The first part of an

MSC that is generated from the model in Fig. 7.3 can be seen in Fig. 7.4. The

Sender process corresponds to the sender part of the CP-net, Network process to

the network part of the CP-net and Receiver process to the receiver part of the

CP-net. In the following we will describe how to extend the model in Fig. 7.3

with primitives to draw this MSC.

In Listing 1 we show the signature of the Java plug-in for the MSC class. It

contains functions for adding new process, adding events between processes,

and adding events internal to a single process. This will, as explained in

Sect. 7.2, be translated, by the stub generator, to a corresponding SML rep-

resentation. In the following we show how to apply SML primitives to the

CP-net to call these methods.

Listing 1 Java signature of the MSC object.

1 void addProcess(String name);
2 void addEvent(String from, String to, String name);
3 void addInternalEvent(String process, String name);

7.4. Visualization Examples 117

Figure 7.4: First part of an MSC generated from the model in Fig. 7.3

Listing 2 Initialization of the MSC view.

1 structure msc = MSC(val name = "Stop-and-Wait Protocol");
2 val _ = msc.addProcess("Sender");
3 val _ = msc.addProcess("Net");
4 val _ = msc.addProcess("Receiver");

To set up the MSC view we need to add some declarations to the CP-net. In

CPN Tools we add declarations as in Listing 2. Line 1 initializes an MSC object

with the name ”Stop-and-Wait Protocol”. Lines 2–4 creates the three processes

as seen in Fig. 7.4; i.e. Sender, Network, and Receiver.
Next we need to extend our model from Fig. 7.3 to generate the events that

correspond to those in Fig. 7.4.

In Fig. 7.5 we see how the methods from Listing 1 are incorporated into the

CP-net. The idea is that we want to generate an event in the MSC when one of

the transitions in the model occurs. We did this as follows: When Send Data in

the CP-net occurs we add an event from Sender to Network in the MSC, where

the label is the same as the data being sent, i.e. ”data” where data is bound from

the string in the packet from Out Buffer. When Drop in the CP-net occurs we

add the internal event Drop on the process Network in the MSC. When Receive
Data in the CP-net occurs, an event is added from Network to Receiver in the

MSC, with label stating what data is received (the label is ”data”, where data

is bound from the string in the packet from Network 1) and also, an event from

Receiver to Network in the MSC, with an acknowledgment with the received

packet number as label; the label is Ack i where i is the integer in the packet

bound in the occurence of Receive Data. Finally, when Receive Ack occurs, an

event is sent from Network to Sender in the MSC with the acknowledgment as

the label; here the label is again Ack i.

7.4 Visualization Examples

This section will give a number of examples of practical use of BRITNeY suite.

We will not describe the examples in detail, but just refer to papers with de-

tailed descriptions.

In Fig. 7.6, we see an animation created to visualize an interoperability pro-

tocol for mobile ad-hoc networks [T4]. The protocol is used to ensure that the

mobile ad-hoc nodes (the laptops) can communicate with the stationary host,

even when on the move. The domain-specific GUI makes it possible for the

118 Chapter 7. The BRITNeY Suite Animation Tool

(id,data)

id+1

id

id id+1

(id,data)

(id,"")

(id,data)

id

(id,data)(id,data)

Drop

input ();
output ();
action
msc.addInternalEvent(
"Network", "Drop");

Receive
Ack

input (id);
output ();
action
msc.addEvent(
"Network",
"Sender",
"Ack "^(Int.toString id));

Receive
Data

input (id,data);
output ();
action
msc.addEvent
("Network","Receiver","\""^data^"\"");
msc.addEvent
("Receiver","Network","Ack "^(Int.toString id));

Send
Data

input (data);
output ();
action
msc.addEvent ("Sender","Network","\""^data^"\"");

Receive
Id

1`1

ID

Network 2

PACKET

Next
Id

1`1

ID

Network 1

PACKET

Out
Buffer

1`(1,"BRITNeY")++
1`(2," is coo")++
1`(3,"l!!!!!!")

PACKET

Figure 7.5: Model from Fig. 7.3 with MSC primitives

Figure 7.6: A visualization of an interoperability protocol for mobile ad-hoc

networks.

user to observe the behavior of the system as packets, visualized by colored

dots, flow along the network and to provide stimuli to the protocol by drag-

ging and dropping the laptops to indicate the node movements. The use of an

underlying formal model can be completely hidden when experimenting with

the prototype. The domain-specific GUI has been used in the project both in-

ternally during protocol design and externally when presenting the designed

protocol to management and protocol engineers not familiar with CPN model-

ing.

In Fig. 7.7 we see the domain specific animation based on the SceneBeans

plug-in. This was used in [94] for requirements engineering of a new workflow

system. The goal of the workflow was to support the handling of a blanc loan

applications.

The animation is constructred as follows: There are always two bank assis-

tants, Ann and Bill. Up to two customers can be present, in the figure only Mr.

Smith is present. A bank manager, Mr. Banks, is always present. The balls

represent blanc loan requests and the position of it shows who is responsible

for the request. Whenever a transfer of responsibility occurs in the CP-net the

ball is moved from one person to another in the animation. One ball has a P
on it. This means that it is suspended, or parked, but can be picked up by

one of the bank employees when they have the time. The square is part of the

animation interface.

7.5. Related Work and Future Improvements 119

Figure 7.7: SceneBeans animation used for requirements engineering.

Once in a while the user can interact with the animation by e.g., setting up

a loan for the customer when he wants to make a loan request, or setting the

status of a loan request on behalf of Ann, Bill or Mr. Banks to e.g. granted

or rejected. By not making the animation look like a normal prototype with

windows, menues etc., the focus of the user was on the workflow and not on

how the interface of the future system should be like.

7.5 Related Work and Future Improvements

BRITNeY suite supports adding animations to CPN models by annotating

transitions with function calls, which are executed whenever the transition

occurs. In the following, we outline how a number of other modeling tools facil-

itate visualization.

ExSpect [50], a tool for modeling based on CP-nets, allows the user to view

the state by associating widgets with the state of the model, and to asyn-

chronously interact with the model, also using simple widgets. In this way,

it is easy to create simple user interfaces that support displaying information,

but support for creating more elaborate animations is not readily available.

MIMIC/CPN [141] makes it possible to animate models in DESIGN/CPN

[37], which is another tool for modeling using CP-nets. CPN models are an-

imated by MIMIC/CPN by using function calls that are executed whenever a

transition of the CP-net occurs. The animations are drawn using an application

that resembles traditional drawing programs. Input from the user is possible

by showing a modal dialog, where the simulation of the model is stopped while

the user is expected to input information. It is also possible to make click-able

regions, and the model can then query if one of these has been clicked. Another

approach, which is taken by the COMMS/CPN [53] library for DESIGN/CPN

and CPN Tools, is to provide a TCP/IP abstraction, allowing the user to code

the user interface in any language and use RPC to communicate with it.

LTSA [116], a tool for modeling using timed labeled transition systems, al-

lows users to animate models using the SceneBeans library. In LTSA anima-

tions are tied to the models by associating each animation activity with a clock;

resetting a clock corresponds to starting an animation sequence. The anima-

tion sequence or a user with his mouse can then send events which correspond

to the progress of the timer.

PNVis [99] is an add-on for the Petri Net Kernel [169], a highly modular

tool for editing Petri nets. PNVis associates tokens with 3D objects and certain

places with locations in a 3D world. Moving tokens corresponds to moving the

associated object in the 3D world. PNVis is suitable for modeling physical sys-

120 Chapter 7. The BRITNeY Suite Animation Tool

tems, but not so applicable for creating prototypes of software or requirements

engineering.

Using some of these animation tools/libraries, animation is integrated with

the modeling formalism, such as the use of timers in LTSA or the ability to

view or change the marking of places in ExSpect. Some libraries are easy to

extend, such as animations in LTSA, as the SceneBeans library allows users

to easily extend it with new animation primitives. Also, animations created

using COMMS/CPN can easily be extended, as the “animation” is just a custom

(e.g. Java) application. Some libraries make it easy to design animations, such

as ExSpect and MIMIC/CPN, which both provide a graphical user interface

to design animations. The approach of the current version of BRITNeY suite

resembles a combination of MIMIC/CPN and COMMS/CPN, as the animation is

driven by function calls associated with transitions to an external application.

The main feature offered by BRITNeY suite from a user point of view is thus

compatibility with CPN Tools (rather than the discontinued DESIGN/CPN) and

platform-independence. BRITNeY suite also makes it easy to extend the tool

using simple Java classes. From a developer point of view, BRITNeY provides

good foundations for allowing closer integration with the model by allowing

parts of the animation to inspect and modify tokens on fusion places of the CPN

model, much like how widgets are associated with places in ExSpect. This is

an important part of future work.

An important new feature of BRITNeY suite is that it is possible to deploy

animations in a way that allows even non-technical users to download and

experiment with the animation. Another part of the future work is to make

this process even easier by adding a wizard to take care of all the details.

BRITNeY suite has already proven itself useful in real projects, and has

already been used in several industrial projects.

Chapter 8

Model-based Prototyping of an

Interoperability Protocol for Mobile

Ad-hoc Networks

The paper Model-based Prototyping of an Interoperability Protocol for Mobile

Ad-hoc Networks presented in this chapter has been published as a conference

paper [T4].

[T4] L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Pro-

totyping of an Interoperability Protocol for Mobile Ad-hoc Networks. In

Proc. of IFM’05, volume 3771 of LNCS, pages 266–286. Springer-Verlag,

2005.

The version presented here is identical to the conference paper except for minor

typographical changes.

121

8.1. Introduction 123

Model-based Prototyping of an
Interoperability Protocol for Mobile Ad-hoc

Networks

L. M. Kristensen∗† M. Westergaard∗ P. C. Nørgaard‡

∗Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: {kris,mw}@daimi.au.dk

‡Ericsson Danmark A/S, Telebit,

Skanderborgvej 222, DK-8260 Viby J, Denmark,

Email: Peder.Chr.Norgaard@ericsson.com

Abstract

We present an industrial project conducted at Ericsson Danmark A/S,

Telebit where formal methods in the form of Coloured Petri Nets (CP-nets

or CPNs) have been used for the specification of an interoperability pro-

tocol for routing packets between fixed core networks and mobile ad-hoc

networks. The interoperability protocol ensures that a packet flow between

a host in a core network and a mobile node in an ad-hoc network is al-

ways relayed via one of the closest gateways connecting the core network

and the mobile ad-hoc network. This paper shows how integrated use of

CP-nets and application-specific visualisation have been applied to build a

model-based prototype of the interoperability protocol. The prototype con-

sists of two parts: a CPN model that formally specifies the protocol mech-

anisms and a graphical user interface for experimenting with the protocol.

The project demonstrates that the use of formal modelling combined with

the use of application-specific visualisation can be an effective approach to

rapidly construct an executable prototype of a communication protocol.

Keywords: Model-driven prototyping; animation; Coloured Petri Nets; mo-

bile ad-hoc network.

8.1 Introduction

The specification and development of communication protocols is a complex

task. One of the reasons is that protocols consist of a number of independent

concurrent protocol entities that may proceed in many different ways depend-

ing on when, e.g., packets are lost, timers expire, and processes are scheduled.

The complex behaviour makes the design of protocols a challenging task. Pro-

tocols operating in networks with mobile nodes and wireless communication

present an additional set of challenges in protocol engineering since the or-

chestration of realistic scenarios with many mobile nodes is impractical, and

the physical characteristics of wireless communication makes reproduction of

errors and scenarios almost impossible.

†Supported by the Danish Natural Science Research Council.

124 Chapter 8. Model-based Prototyping of an Interoperability Protocol

We present a case study from a joint research project [101] between the

Coloured Petri Nets Group [34] at University of Aarhus and Ericsson Dan-

mark A/S, Telebit [47]. The research project applies formal methods in the

form of Coloured Petri Nets (CP-nets or CPNs) [91, 102] and the supporting

CPN Tools [33] in the development of Internet Protocol Version 6 (IPv6) [82]

based protocols for ad-hoc networking [137]. An ad-hoc network is a collec-

tion of mobile nodes, such as laptops, personal digital assistants, and mobile

phones, capable of establishing a communication infrastructure for their com-

mon use. Ad-hoc networking differs from conventional networks in that the

nodes in the ad-hoc network operate in a fully self-configuring and distributed

manner, without any preexisting communication infrastructure such as base

stations and routers.

CP-nets is a graphical discrete-event modelling language applicable for con-

current and distributed systems. CP-nets are based on Petri nets [143] and the

programming language Standard ML (SML) [159]. Petri nets provide the foun-

dation of the graphical notation and the basic primitives for modelling concur-

rency, communication, and synchronisation. The SML programming language

provides the primitives for the definition of data types, modelling data manip-

ulation, and for creating compact and parameterisable models. CPN models

are executable and describe the states of a system and the events (transitions)

between the states. CP-nets includes a module concept that makes it possi-

ble to organise large models into a hierarchically related set of modules. The

CPN modelling language is supported by CPN Tools and have previously been

applied in a number of projects for modelling and validation of protocols (see,

e.g., [61,64,103,132]).

The use of formal modelling languages such as CP-nets for specification

and validation of protocols is attractive for several reasons. One advantage of

formal models is that they are based on the construction of executable models

that make it possible to observe and experiment with the behaviour of the

protocol prior to implementation using, e.g., simulation. This typically leads

to more complete specifications since the model will not be fully operational

until all parts of the protocol have been at least abstractly specified. A model

also makes it possible to explore larger scenarios than is practically possible

with a physical setup. Another advantage of formal modelling is the support

for abstraction, making it possible to specify protocols while ignoring many

implementation details.

From a practical protocol engineering viewpoint, the use of formal mod-

elling also have some shortcomings. Even if the modelling language supports

abstraction and a module concept there is in most cases an overwhelming

amount of detail in the constructed model. This is a disadvantage, in par-

ticular when presenting and discussing the design with colleagues unfamiliar

with the applied modelling language. This means that a formal specification

in many cases is accompanied by informal drawings being developed in paral-

lel. The level of detail can also be a disadvantage when exploring the protocol

design via, e.g., simulation. Furthermore, even if a model is executable, it still

lacks the application- and domain-specific appeal of a conventional prototype.

The contribution of this paper is to present a model-based prototyping ap-

proach where formal modelling is integrated with the use of an animation GUI

for visualising system behaviour to address the shortcomings of formal mod-

elling discussed above. The approach has been applied to an interoperability

protocol for routing packets between nodes in a mobile ad-hoc network and

hosts in a fixed core network. Formal modelling is used for the specification of

the protocol mechanisms and an application- and domain-specific GUI [C2] is

added on top of the CPN model. The result is a model-based prototype in which

8.2. The Interoperability Protocol 125

Figure 8.1: The hybrid network architecture.

the animation GUI makes it possible to observe the behaviour of the system

and provide stimuli to the protocol. The use of an underlying formal model

is fully transparent when experimenting with the prototype. The animation

GUI has been used in the project both internally during protocol design and

externally when presenting the designed protocol to management and protocol

engineers not familiar with CPN modelling.

The rest of the paper is organised as follows. Section 8.2 gives a brief in-

troduction to the network architecture and the interoperability protocol, and

Sect. 8.3 presents the model-based prototyping approach. Section 8.4 presents

selected parts of the CPN model specifying the interoperability protocol. Sec-

tion 8.5 presents the graphical animation user interface and package applied

in the project. Finally, Sect. 8.6 sums up the conclusions and presents related

work.

8.2 The Interoperability Protocol

Figure 8.1 shows the hybrid network architecture captured by the model-based

prototype. The network architecture consists of two parts: an IPv6 core net-

work (left) and a mobile ad-hoc network (right). The core network consists of a

Domain Name System (DNS) Server and Host 1. The mobile ad-hoc network con-

tains three mobile nodes (Ad-hoc Node 3-5). The core network and the mobile

ad-hoc network are connected by Gateway 1 and Gateway 2. A routing protocol

for conventional IP networks (such as OSPF [110]) is deployed in the core net-

work and a routing protocol for ad-hoc networks (such as OLSR [29]) is used in

the mobile ad-hoc network. The purpose of the interoperability protocol is to

ensure that packets are routed between hosts in the core network and nodes in

the mobile ad-hoc network via the closest gateway.

The gateways periodically announce their presence to nodes in the mobile

ad-hoc network by sending gateway advertisements containing an IPv6 ad-

dress prefix. The address prefixes announced by the gateways are assumed

to be unique, and the advertisement can be distributed to the ad-hoc nodes

using, e.g., flooding. The interoperability protocol does not rely on a specific

dissemination mechanism for the gateway advertisements. The interoperabil-

ity protocol generalises to an arbitrary number of gateways and mobile nodes.

Figure 8.1 shows the concrete setup represented in the model-based prototype.

126 Chapter 8. Model-based Prototyping of an Interoperability Protocol

IPv6 addresses [69] are 128-bit and by convention written in hexadecimal

notation in groups of 16 bits separated by colon (:). Leading zeros are skipped

within each group and a double colon (::) is a shorthand for a sequence of ze-

ros. Addresses consists of an address prefix and an interface identifier. Ad-

dress prefixes are written on the form x/y where x is an IPv6 address and

y is the length of the prefix. The mobile nodes in the ad-hoc network con-

figure IPv6 addresses based on the received gateway advertisements. In the

network architecture depicted in Figure 8.1, Gateway 1 is announcing the 64-

bit address prefix 3ffe:100:3:405::/64 and Gateway 2 is announcing the prefix

3ffe:100:4:406::/64. It can be seen from the labels below the mobile nodes that

Ad-hoc Node 3 and Ad-hoc Node 4 have configured IP addresses based on the

prefix announced by Gateway 1, whereas Ad-Hoc Node 5 has configured an IP

address based on the prefix announced by Gateway 2. For an example, Ad-hoc
Node 3 has configured the address 3ffe:100:3:405::3.

Each of the gateways has configured an address on the interface to the ad-

hoc network based on the prefix they are announcing to the ad-hoc network.

Gateway 1 has configured the address 3ffe:100:3:405::1 and Gateway 2 has con-

figured the address 3ffe:100:3:406::1. The gateways have also configured ad-

dresses on the interface to the core network based on the 3ffe:100:3:401::/64
prefix of the core network. Host 1 in the core network has configured the ad-

dress 3ffe:100:3:401::2 and the DNS server has configured the address

3ffe:100:3:401::1. The ad-hoc nodes may receive advertisements from both gate-

ways and configure an IPv6 address based on each of the prefixes. The reacha-

bility of the address prefixes announced by the gateways in the ad-hoc network

are announced in the core network via the routing protocol executed in the core

network.

The basic idea in the interoperability protocol is that the mobile nodes reg-

ister the IPv6 address in the DNS database which corresponds to the preferred

(closest) gateway. Updates to the DNS database relies on the Dynamic Domain

Name System Protocol [168]. The entries in the DNS database related to the

mobile nodes are shown to the upper left in Figure 8.1. For an example, it can

be seen that the entry for Ad-hoc Node 3 (AHN(3)) is mapped to the address

3ffe:100:3:405::3. When a mobile ad-hoc node discovers that another gateway

is closer, it will send an update to the DNS server causing its DNS entry to be

changed to the IPv6 address based on the prefix announced by the new gate-

way. It is assumed that the routing protocol executed in the mobile ad-hoc

network will provide the information required for a mobile node to determine

its distances to the currently reachable gateways. This means that when Host
1 wants to communicate, with e.g., Ad-hoc Node 3 and makes a DNS request to

resolve the IP address of Ad-hoc Node 3, the DNS server will return the IP ad-

dress corresponding to the prefix announced by the gateway closest to Ad-hoc
Node 3.

8.3 Model-based Prototyping Methodology

Figure 8.2 shows the approach taken to use CPN models to develop a prototype

of the interoperability protocol. A CPN model (lower left of Figure 8.2) has

been developed by modelling the natural language protocol specification [130]

(lower right) of the interoperability protocol. The modelling activity transforms

the natural language specification into a formal executable specification repre-

sented by the CPN model. The CPN model captures the network architecture

depicted in Figure 8.1 and the protocol mechanisms of the interoperability pro-

tocol, e.g., the periodic transmission of advertisements, the dynamic updates

8.4. The CPN Model 127

of the DNS database, and traffic flows between hosts in the core network and

nodes in the ad-hoc network. The resulting model can already be viewed as an

early prototype since it is possible to execute and experiment with the protocol

at the level of the CPN model. Since CP-nets is a graphical modelling language,

it is possible to observe the execution of the model directly on the CPN model.

The CPN model provides a very detailed view on the execution of the sys-

tem and it can be an advantage to provide a high-level way of interacting and

experimenting with the prototype. Furthermore, when presenting the protocol

design to people not familiar with CP-nets, it can be an advantage to be able to

demonstrate the prototype without directly relying on the CPN model but more

application and domain specific means. To support this, an animation GUI (top

left of Figure 8.2) has been added on top of the CPN model. This graphics visu-

alises the execution of the prototype using the graphical representation of the

network architecture previously shown in Figure 8.1. The graphics is updated

by the underlying CPN model according to the execution of the protocol.

In addition to observe feedback on the execution of the system in the ani-

mation GUI, it is also possible to provide input to the system directly via the

animation GUI. In the prototype, it is possible for the demonstrator (e.g., a

protocol engineer) to move the nodes in the ad-hoc network and to define traffic

flows from the host in the core network to the nodes in the mobile ad-hoc net-

work. The animation GUI has been implemented using a general visualisation

package and framework [C2] developed in the course of the project (see Sect.

8.4).

Altogether the approach makes it possible to explore and demonstrate the

prototype of the interoperability protocol based on the CPN model that formally

captures the design, but doing it in such a way that the use an underlying

formal model is transparent for the observer and the demonstrator.

8.4 The CPN Model

This section presents the CPN model specifying the interoperability protocol.

The complete CPN model is hierarchically structured into 18 modules. As the

CPN model is too large to be presented in full in this paper, we present only

selected parts of the CPN model. The aim is to show how the key aspects of

the interoperability protocol have been modelled. The key concepts of CP-nets

CPN Model

Core

Network

1

1‘(ROUTING,{src="3ffe:100:3:401::2

",dest="3ffe:100:3:401::1",cont=DNS

_REQ("AHN(3)")})

CmdxPacket

AdHoc

Network

2

1‘(RECEIVE("AHN(3)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicast"

,cont=GW_ADV(("3ffe:100:3:401::1","

3ffe:100:3:405::"))})++

1‘(RECEIVE("AHN(4)"),{src="3ffe:100

:3:405::1",dest="all-nodes multicast"

,cont=GW_ADV(("3ffe:100:3:401::1","

3ffe:100:3:405::"))})

CmdxPacket

Config1
1

1‘("3ffe:100:3:401::3","3ffe:100:3:4

05::1","3ffe:100:3:405::")

GWConfig

Config2
1

1‘("3ffe:100:3:401::4","3ffe:100:3:4

06::1","3ffe:100:3:406::") GWConfig

E

e

Core

Network

CoreNetwork

AdHoc

Network

AdHocNetwork

Gateway1

Gateway

Gateway2

Gateway

Init

gwassign_ip("gw1", "3ffe:100:3:401::3",

"3ffe:100:3:405::1","3ffe:100:3:405::")

gwassign_ip("gw2", "3ffe:100:3:401::4",

"3ffe:100:3:406::1","3ffe:100:3:406::")

e

Protocol specification

Modelling

Demonstrater

Feedback

Input

Explore and interact

Animation GUI

Figure 8.2: Model-based prototyping approach.

128 Chapter 8. Model-based Prototyping of an Interoperability Protocol

gwassign_ip("gw1", "3ffe:100:3:401::3",
"3ffe:100:3:405::1","3ffe:100:3:405::")

gwassign_ip("gw2", "3ffe:100:3:401::4",
"3ffe:100:3:406::1","3ffe:100:3:406::")

e
Core

Network

CoreNetwork

AdHoc
Network

AdHocNetwork

Gateway1

Gateway

Gateway2

Gateway

Init Core
Network

CmdxPacket

1

1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

AdHoc
Network

CmdxPacket

2

1`(RECEIVE("AHN(3)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})++
1`(RECEIVE("AHN(4)"),{src="3ffe:100
:3:405::1",dest="all-nodes multicast"
,cont=GW_ADV(("3ffe:100:3:401::1","
3ffe:100:3:405::"))})

Config1

GWConfig

1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

Config2

GWConfig
1

1`("3ffe:100:3:401::4","3ffe:100:3:4
06::1","3ffe:100:3:406::")

E

e

Figure 8.3: System module – top-level module of the CPN model.

will be briefly introduced as we proceed with the presentation. The reader is

referred to [102] for a comprehensive introduction to CP-nets.

8.4.1 Model Overview

The module concept of CP-nets is based on the notion of substitution transitions

which have associated submodules describing the compound behaviour repre-

sented by the substitution transition. A submodule of a substitution transition

may again contain substitution transitions with associated submodules. Fig-

ure 8.3 shows the top level module of the CPN model which is composed of three

main parts represented by the rectangular substitution transitions CoreNet-
work (left), Gateway1 and Gateway2 (middle), and AdHocNetwork (right). The

substitution transition CoreNetwork and its submodules model the core net-

work, the substitution transition AdHocNetwork and its submodules model the

mobile ad-hoc network, and the submodules of the two Gateway substitution

transitions model the operation of the gateways connecting the core network

and the mobile ad-hoc network. The text in the small rectangular box attached

to each substitution transition gives the name of the associated submodule.

The state of a CPN model is represented through places (drawn as ellipses).

There are four places in Fig. 8.3. The places CoreNetwork and AdHocNetwork
are used for model modelling the packets in transit on the core network and

ad-hoc network, respectively. The state of a CPN model is a distribution of

tokens on the places of the CPN model. Figure 8.3 depicts a state where there

is one token on place CoreNetwork and two tokens on place AdHocNetwork. The

number of tokens on a place is written in the small circle attached to the place.

The data values (colours) of the tokens are given in the filled box positioned

next to the small circle. As an example, place CoreNetwork contains one token

with the colours:

(ROUTING, {src="3ffe:100:3:401::2", dest="3ffe:100:3:401::1",
cont=DNSREQ("AHN(3)")})

representing a DNS request in transit from Host 1 to the DNS server. Place

AdHocNetwork contains two tokens representing gateway advertisements in

transit to nodes in the ad-hoc network. The two Config places each contains a

token representing the configuration of the corresponding gateway. It consists

8.4. The CPN Model 129

of the IP address of the interface connected to the core network, the IP address

of the interface connected to the ad-hoc network, and the prefix announced.

The data values (colours) of tokens that can reside on a place are deter-

mined by the colour set of the place which by convention is written below the

place. Colour sets are similar to types known from conventional programming

languages. Figure 8.4 lists the definitions of the colour sets (types) used in

the System module. IP addresses, prefixes, and symbolic IP addresses are rep-

resented by colour sets IPAdr, Prefix, and Symname all defined as the set of

strings. The colour set PacketCont and Packet are used for modelling the IP

packets. The five different kinds of packets used in the interoperability proto-

col are modelled by PacketCont:

DNS REQ modelling a DNS request packet. It contains the symbolic IP address

to be resolved.

DNS REP modelling a DNS reply. It contains the symbolic IP address and the

resolved IP address.

DNS UPD modelling a DNS update. It contains the symbolic IP address to be

updated and the new IP address to be bound to the symbolic address.

GW ADV modelling the advertisements disseminated from the gateways. An

advertisement contains the IP address of the gateway and the announced

prefix.

PACKET modelling generic payload packets transmitted between hosts and the

mobile nodes.

The colour set Packetmodels the packets as a record containing the source,

destination, and the content. The actual payload (content) and layout of pack-

ets are indifferent for modelling the interoperability protocol and has therefore

been abstracted away. The colour set Cmd is used to control the operation of

the various modules in the CPN model. The colour set GWConfig models the

configuration information of the gateway.

8.4.2 Modelling the Core Network

Figure 8.5 shows the CoreNetwork module modelling the core network. This

module is the immediate submodule of the substitution transition CoreNet-
work of the System module shown in Figure 8.3. The port place CoreNetwork is

assigned to the CoreNetwork socket place in the System module (see Figure 8.3).

Port places are indicated by the In , Out , or I/O tags associated with them.

The assignment of a port place to a socket place means that the two places are

linked together and will always have identical tokens. By adding and removing

tokens from port places, it is possible for a submodule to exchange tokens with

its environment. The substitution transition Routing represents the routing

mechanism in the core network. The substitution transition Host represents

the host on the core network, and the substitution transition DNS Server rep-

resents the DNS server.

Hosts.

Figure 8.6 depicts the Host module modelling the host on the core network. The

port place CoreNetwork (bottom) is assigned to the CoreNetwork socket place in

the CoreNetwork module (see Figure 8.5). The module models the transmission

of packets from the host to one of the mobile ad-hoc nodes. The substitution

130 Chapter 8. Model-based Prototyping of an Interoperability Protocol

(* --- Addressing --- *)
colset Prefix = string; (* address prefixes *)
colset IPAdr = string; (* IP addresses *)
colset SymName = string; (* symbolic names *)

5

colset SymNamexIPAdr = product SymName * IPAdr;
colset IPAdrxPrefix = product IPAdr * Prefix;

(* --- packets --- *)
10 colset PacketCont = union DNS_REQ : SymName + (* DNS Request *)

DNS_REP : SymNamexIPAdr + (* DNS Reply *)
DNS_UPD : SymNamexIPAdr + (* DNS Update *)
GW_ADV : IPAdrxPrefix + (* Advertisments *)
PACKET; (* Payload *)

15

colset Packet = record src : IPAdr *
dest : IPAdr *
cont : PacketCont;

20 colset Cmd = union ROUTING +
RECEIVE : IPAdr +
FLOODING : IPAdr +
GWAHNROUTING : IPAdr +
AHNGWROUTING : IPAdr;

25

colset CmdxPacket = product Cmd * Packet;

(* --- Gateways configuration --- *)
colset GWConfig = product IPAdr * IPAdr * Prefix;

Figure 8.4: Colour set definitions used in the System module.

Host

Host

DNS
Server

DNSServer

Routing

CNRouting

Core
Network

CmdxPacket

I/O

Figure 8.5: Core Network module – modelling the core network.

transition Flows (top) is used for interfacing with the animation GUI. We will

return to this issue in Sect. 8.5.

The remaining places and transitions are used for modelling the behaviour

of the host. The rectangles in Fig. 8.6 are ordinary transitions (i.e., not substi-

tution transitions) which means that they can become enabled and occur. The

dynamics of a CPN model consists of occurrences of enabled transitions that

change the distribution of tokens on the places. An occurrence of a transition

removes tokens from places connected to incoming arcs of the transition and

adds tokens to places connected to outgoing arcs of the transition. The colours

of the tokens removed from input places and added to output places are deter-

mined by evaluating the arc expressions on the arcs surrounding the transition.

The arc expressions are written in the SML programming language. Data val-

8.4. The CPN Model 131

symname

(RECEIVE ipadr,
 {src = "3ffe:100:3:401::1",
 dest=ipadr,
 cont = DNS_REP (symname,resipadr)})

symname

(ROUTING,{src = ipadr,
 dest = "3ffe:100:3:401::1",
 cont = DNS_REQ symname})

ipadr
ipadr

symname

(symname, resipadr)

(ROUTING,{src = ipadr,
 dest = destipadr,
 cont = PACKET})

ipadr

(symname, destipadr)

Send
DNSRequest input ipadr;

output ();
action
increment_out(ipadr);

Receive
DNSReply input ipadr;

output ();
action
decrement_in(ipadr);

Send
Packet

input ipadr;
output ();
action
increment_out(ipadr);

Flows

Flows

Core
Network

CmdxPacket

I/O

Waiting

SymName

Host

IPAdr

assign_ip("host1", "3ffe:100:3:401::2")
1

1`"3ffe:100:3:401::2"

NewFlow

SymName

if animated
then empty
else 1`"AHN(3)"

1
1`"AHN(3)"

Flows

SymNamexIPAdr

Figure 8.6: Host module – modelling the host.

ues must be bound to the variables appearing in the surrounding arc expres-

sions before the arc expressions can be evaluated. This is done by creating a

binding element which is a pair (t, b) consisting of a transition t and a binding

b assigning data values to the variables of the transition. A binding element

(t, b) is enabled iff the multi-set of tokens obtained by evaluating each input arc

expression is a subset of the tokens present on the corresponding input place.

When the user defines a flow in the animation GUI, a token will appear in

place NewFlow with a colour corresponding to the symbolic name of the mobile

ad-hoc node which is the destination of the packet flow. An example is given in

Fig. 8.6, where the NewFlow place contains a token corresponding to the user

having defined a flow to Ad-hoc Node 3. This enables the SendDNSRequest
transition in a binding where the value "AHN(3)" is bound to the variable

symname of type SymName and the variable ipadr is bound to the value of the

token on place Host specifying the IP address of the host.

When the SendDNSRequest transition occurs in the above binding, it will

remove tokens from places NewFlow and Host, and add tokens to the output

places Host, Waiting, and CoreNetwork. Tokens are added to the Host place

since SendDNSRequest and Host are connected by a double arcs which is a

short-hand for an arc in each direction having identical arc expressions. The

colour of the tokens added are determined by evaluating the expressions on

the output arcs. The resulting state is shown in Fig. 8.7. A token representing

the IP address of the host is put back on place Host, a token representing the

symbolic name to be resolved is put on place Waiting, and a token representing

a DNS request has been put on place CoreNetwork.

The reception of the DNS reply from the DNS server is modelled by the tran-

sition ReceiveDNSReply which causes the token on place Waiting to be removed

and a token to be added on place Flows. This corresponds to the host entering

a state in which packets can be transmitted to the mobile ad-hoc node. The

sending of packets is modelled by the transition SendPacket. The user may

then decide (via the animation GUI) to terminate the packet flow which will

cause the token on place Flows to be removed, and transmission of packets will

cease. A host can have concurrent flows to different mobile ad-hoc nodes.

132 Chapter 8. Model-based Prototyping of an Interoperability Protocol

symname

(RECEIVE ipadr,
 {src = "3ffe:100:3:401::1",
 dest=ipadr,
 cont = DNS_REP (symname,resipadr)})

symname

(ROUTING,{src = ipadr,
 dest = "3ffe:100:3:401::1",
 cont = DNS_REQ symname})

ipadr
ipadr

symname

(symname, resipadr)

(ROUTING,{src = ipadr,
 dest = destipadr,
 cont = PACKET})

ipadr

(symname, destipadr)

Send
DNSRequest input ipadr;

output ();
action
increment_out(ipadr);

Receive
DNSReply input ipadr;

output ();
action
decrement_in(ipadr);

Send
Packet

input ipadr;
output ();
action
increment_out(ipadr);

Flows

Flows

Core
Network

CmdxPacket

I/O1
1`(ROUTING,{src="3ffe:100:3:401::2
",dest="3ffe:100:3:401::1",cont=DNS
_REQ("AHN(3)")})

Waiting

SymName

1

1`"AHN(3)"

Host

IPAdr

assign_ip("host1", "3ffe:100:3:401::2")
1

1`"3ffe:100:3:401::2"

NewFlow

SymName

if animated
then empty
else 1`"AHN(3)"

Flows

SymNamexIPAdr

Figure 8.7: Host module – after occurrence of SendDNSRequest transition.

Domain Name Server and Database.

Figure 8.8 shows the DNSServer module modelling the DNS Server. The place

DNSAdr contains a token corresponding to the IP address of the DNS Server.
Place DNSDatabase models the DNS database entries on the DNS Server.

There is a token on place DNSDatabase for each entry in the DNS database.

The entries in the DNS database are modelled as tuples where the first com-

ponent is the symbolic address (name) and the second component is the IP

address bound to the symbolic name in the first component.

There are two possible events in the DNS server modelled by the transi-

tions DNSRequest and DNSUpdate. The transition DNSRequest models the

reception of DNS requests (from hosts) and the sending of the DNS reply con-

taining the resolved IP address. The transition DNSUpdate models the recep-

tion of DNS updates from the mobile ad-hoc nodes. Both transitions access the

DNSDatabase for lookup (transition DNSRequest) and modification (transition

DNSUpdate).

Core Network Routing.

The CPN model does not specify a specific routing protocol but only the re-

quirements to the core network routing protocol. This means that any routing

protocol that meets these requirements can be used to implement the interop-

(RECEIVE ipadr,
 {src = srcipadr,
 dest = ipadr,
 cont = DNS_REQ symname})

(ROUTING,
 {src = ipadr,
 dest = srcipadr,
 cont = DNS_REP (symname,resipadr)})

(RECEIVE ipadr,
 {src = newipadr,
 dest = ipadr,
 cont = DNS_UPD (symname,newipadr)})

(symname,resipadr)

(symname,resipadr)

(symname,newipadr)

ipadr ipadr

DNSRequest

input ipadr;
output ();
action
decrement_in(ipadr);
increment_out(ipadr)

DNSUpdate

input (symname, newipadr, ipadr);
output ();
action
decrement_in(ipadr);
update_dns(symname, newipadr);
()

Core
Network

CmdxPacket

I/O

DNS
Database

SymNamexIPAdr

create_dns_entry [3, 4, 5]

3

1`("AHN(3)","3ffe:100:3:405::3")++
1`("AHN(4)","3ffe:100:3:405::4")++
1`("AHN(5)","3ffe:100:3:406::5")

DNSAdr

IPAdr

assign_ip("dns", "3ffe:100:3:401::1")
1 1`"3ffe:100:3:401::1"

Figure 8.8: DNSServer module – modelling the DNS Server.

8.4. The CPN Model 133

(ROUTING,
 { src = srcipadr,
 dest = destipadr, cont = content})

(RECEIVE nhipadr,
{src = srcipadr,dest=destipadr,cont=content})

routinginformation
Route

input (srcipadr, nhipadr, content);
output (); action if String.substring (srcipadr, 13, 1) = "1"
then show_flow(srcipadr, nhipadr, content)
else show_flow((String.substring (srcipadr, 0, 16)) ^ "1",
nhipadr, content)

[nhipadr = FindNextHop routinginformation destipadr]

Core
Network

CmdxPacket

I/O

RoutingInformation

RoutingInformation
[("3ffe:100:3:405::","3ffe:100:3:401::3"),
 ("3ffe:100:3:406::","3ffe:100:3:401::4")]

1

1`[("3ffe:100:3:405::","3ffe:100:3:40
1::3"),("3ffe:100:3:406::","3ffe:100:3
:401::4")]

Figure 8.9: CNRouting module – Routing in the core network.

erability protocol. The routing mechanism in the core network is abstractly

modelled by the CNRouting module shown in Figure 8.9. The place Routing-
Information models the routing information computed by the specific routing

protocol in operation. This place contains a token that makes it possible given

a prefix, to find the IP address of the corresponding gateway on the core net-

work. This specifies the requirement that the gateways are required to partic-

ipate in the routing protocol of the core network and announce a route to the

prefix that they are advertising in the mobile ad-hoc network. This enables

packets for nodes in the mobile ad-hoc network to be routed via the gateway

advertising the prefix that matches the destination IP address of the packet.

The transition Route models the routing of the packet on the core network. It

uses the routing information on place RoutingInformation to direct the packet to

the proper gateway. The function FindNextHop in the guard expression of the

transition computes the IP address of the next hop gateway using the routing

information and destination IP address of the packet.

8.4.3 Modelling the Gateways

The role of the gateway is to relay packets between the core network and the

mobile ad-hoc network, and to periodically send advertisements to the mobile

ad-hoc network. Figure 8.10 shows the Gateway module modelling the oper-

ation of the gateways. This module is the submodule of the two substitution

transitions Gateway1 and Gateway2 on the System module. This means that

there will be two instances of the Gateway module - one for each of the substi-

tution transitions. Figure 8.10 shows the instance corresponding to Gateway1.

The port place CoreNetwork is assigned to the socket place CoreNetwork and

the port place AdHocNetwork is assigned to the socket place AdHocNetwork on

the System module. The place Config contains a token giving the configuration

of the gateway.

The relay of packets from the core network to the mobile ad-hoc network

is modelled by the transition AHN CoreTransmit and the relay of packets from

the mobile ad-hoc network to the core network is modelled by the transition

Core AHNTransmit. Packets to be transmitted from the core network to the

ad-hoc network are represented by tokens in the place CoreNetwork. When the

transition Core AHNTransmit occurs corresponding to the relay of a packet from

the core network to the ad-hoc network, this token will be removed from the

CoreNetwork place and a new token representing the packet added to the place

AdHocNetwork. The relay of packets from the AdHocNetwork to the CoreNet-
work is modelled in a similar manner by the transition

AHN CoreTransmit. The periodic transmission of advertisements on the mo-

bile ad-hoc network is modelled by the substitution transition GatewayAdver-
tisement. The presentation of the submodule associated with this substitution

transition has been omitted.

134 Chapter 8. Model-based Prototyping of an Interoperability Protocol

(RECEIVE ipadr,packet)(ROUTING,packet)

(GWAHNROUTING ipadr,packet)(RECEIVE ipadr1,packet)

(ipadr1,ipadr,prefix)

(ipadr1,ipadr,prefix)

Gateway
Advertisement

GWAdvertise

AHN_CORE
Transmitinput ipadr;

output (); action
increment_out(ipadr);
decrement_in(ipadr)

CORE_AHN
Transmit

input ipadr;
output ();
action
increment_out(ipadr);
decrement_in(ipadr)

Config

GWConfig

I/O
1

1`("3ffe:100:3:401::3","3ffe:100:3:4
05::1","3ffe:100:3:405::")

Core
Network

CmdxPacket

I/O

AdHoc
Network

CmdxPacket

I/O

Figure 8.10: Gateway module – modelling the operation of the gateways.

8.4.4 Modelling the Mobile Ad-hoc Network

Figure 8.11 depicts the AdHocNetwork module which is the top level module

of the part of the CPN model modelling the mobile ad-hoc network. The place

Nodes is used to represent the nodes in the mobile ad-hoc network. The place

RoutingInformation is used to represent the routing information in the ad-hoc

network which is assumed to be available via the routing protocol executed in

the ad-hoc network. This routing information enables among other things the

nodes to determine the distance to the reachable gateways. Detailed informa-

tion about the colour of the token on place RoutingInformation has been omitted.

Figure 8.12 lists the definition of the colour sets used in the AdHocNetwork
module. The topology of the mobile ad-hoc network is abstractly represented by

only representing the distance from each of the ad-hoc nodes to the two gate-

ways. The reason is that it is only the relative distance to the two gateways

which are of relevance to the operability protocol – not the complete topology.

The colour set DistanceInformation is used to keep track of the reachability be-

tween the nodes in the ad-hoc network and the gateways. The distance infor-

mation is a list with an entry for each pair of ad-hoc node and gateway. Each

entry is again list consisting of a four-tuple (colour set DistanceEntry). Each en-

try consists of the symbolic name of the mobile ad-hoc node, its IP address (if

configured), the IP address of the gateway (if configured), and the distance to

the gateway. The gateway may also be unreachable in which case the distance

is set to NOTREACH.

The colour set AHNConfig is used to model the configuration information

Routing

AHNRouting

Flooding

Flooding

Mobility

Mobility

AHNodes

Node

AdHoc
Network

CmdxPacket

I/O

Routing
Information

DistanceInformationif animated then 1`(create_routing [3,4,5])
else 1`[(AHN(3),"3ffe:100:3:405::3","3ffe:100:3:405::1",REACH(3)),
 (AHN(3),"","3ffe:100:3:406::1",REACH(3)),
 (AHN(4),"3ffe:100:3:405::4","3ffe:100:3:405::1",REACH(3)),
 (AHN(4),"","3ffe:100:3:406::1",REACH(3)),
 (AHN(5),"3ffe:100:3:405::5","3ffe:100:3:405::1",REACH(3)),
 (AHN(5),"","3ffe:100:3:406::1",REACH(3))]

1

Nodes

AHNConfig

create_node [3, 4, 5]

3

1`(AHN(3),[("3ffe:100:3:405::3","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(5),[("3ffe:100:3:406::5","3ffe
:100:3:406::1","3ffe:100:3:406::"),("
3ffe:100:3:405::5","3ffe:100:3:405::
1","3ffe:100:3:405::")])

Figure 8.11: AdHocNetwork module – modelling the ad-hoc network.

8.4. The CPN Model 135

(* --- ad-hoc nodes --- *)
colset AHId = int with 1..5;
colset AHNode = union AHN : AHId;

5 (* --- distance information --- *)
colset Distance = union REACH : Dist + NOTREACH;
colset DistanceEntry = product AHNode * IPAdr * IPAdr * Distance;
colset DistanceInformation = list DistanceEntry;

10 (* --- configuration information for ad-hoc nodes --- *)
colset AHNIPConfig = product IPAdr * IPAdr * Prefix;
colset AHNIPConfigs = list AHNIPConfig;
colset AHNConfig = product AHNode * AHNIPConfigs;

Figure 8.12: Colour definitions used in the AdHocNetwork module.

for the mobile ad-hoc nodes. Each ad-hoc node is represented by a token on

place Nodes and the colour of the tokens specifies the name of the node and a

list of configured IP addresses. Each configuration of an IP address specifies

the IP address configured, and the IP address and prefix of the corresponding

gateway. It is possible for a mobile ad-hoc node to configure an IP address

for multiple gateways. The node will ensure that the DNS database always

contains the IP address corresponding to the preferred gateway.

There are four substitution transitions in the AdHocNetwork module corre-

sponding to the components of the ad-hoc network represented:

AHNodes represents the behaviour of the nodes in the mobile ad-hoc network.

This will be presented in more detail below.

Mobility represents the mobility of nodes in the ad-hoc network, i.e., that the

nodes may move closer or further away from the gateways. We will return

to the modelling of mobility in Sect. 8.5.

Routing represents the routing protocol executed in the ad-hoc network. The

purpose of the routing protocol in the context of the interoperability pro-

tocol is to provide the nodes with information about distances to the gate-

ways. The routing is abstractly modelled in a similar way as the routing

mechanism in the core network and will not be discussed further in this

paper.

Flooding models the dissemination of advertisements from the gateways. A

detailed presentation of this part of the model has been omitted.

Figure 8.13 depicts the Node module specifying the operation of the ad-hoc

nodes. The module has three substitution transitions. PacketReceive repre-

sents the reception of packets from hosts in the core network. The submodule

PacketReceive of this substitution transition is shown in Figure 8.14. The tran-

sition PacketReceive models the reception of a packet and consumes the token

on place AdHocNetwork corresponding to the packet being received. AdvRe-
ceive represents the reception of advertisements from the gateways. A node

changes its preferred IP address if the received advertisement is from a gate-

way which is closer than the gateway corresponding to the currently preferred

gateway (if any). If the node configures a new preferred IP address based on

the received advertisement, then it will send an update to the DNS server con-

taining the new preferred IP address. DeleteGW represents the case where the

136 Chapter 8. Model-based Prototyping of an Interoperability Protocol

DeleteGW

DeleteGW

PacketReceive

PacketReceive

AdvReceive

AdvReceive

Nodes

AHNConfig

I/O

3
1`(AHN(3),[("3ffe:100:3:405::3","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(4),[("3ffe:100:3:405::4","3ffe
:100:3:405::1","3ffe:100:3:405::")])+
+
1`(AHN(5),[("3ffe:100:3:406::5","3ffe
:100:3:406::1","3ffe:100:3:406::")])

Routing
Information

DistanceInformation

I/O1

AdHoc
Network

CmdxPacket

I/O

Figure 8.13: Node module – modelling an ad-hoc node.

(RECEIVE ipadr,
 {src = srcipadr,
 dest = ipadr,
 cont = PACKET})(AHN(i),ahnipconfigs)

PacketReceive

input ipadr; output (); action
decrement_in(ipadr);

[IPConfigured(AHN(i),ahnipconfigs,ipadr)]

AdHoc
Network

CmdxPacket

In

Nodes

AHNConfig

I/O 3

Figure 8.14: PacketReceive module – modelling reception of payload packets.

gateway corresponding to a configured IP address becomes unreachable. The

assumption is that this will be detected via the routing protocol executed in

the ad-hoc network or if advertisement has not been received for a specified

amount of time. The submodules of the AdvReceive and DeleteGW are similar

in complexity as the submodule of the PacketReceive substitution transition in

Fig. 8.14 and has been omitted.

8.5 The Animation Graphical User Interface

The animation GUI has been implemented based on a general animation pack-

age [C2] developed in the course of the project. The animation package provides

a general framework for adding various diagram types on top of executable

models. The animation package is not designed specifically for CPN models,

but is applicable also to other modelling formalisms.

The architecture of the model-based prototype developed in the project is de-

picted in Fig. 8.15 and consists of three main parts: The CPN Tools GUI (left),

the CPN simulator (middle), and the animation GUI (right). The CPN Tools

GUI and the CPN simulator constitute the CPN computer tools used in the

project. CPN models are constructed using the CPN Tools GUI and the CPN

simulator implements the formal semantics of CP-nets for execution of CPN

models. The simulator communicates via the XML-RPC [170] infrastructure

with the animation GUI to display the execution of the CPN model using the

domain-specific graphics and for receiving stimuli/input from the demonstra-

tor. The specific visualisation means are determined by the set of animation

plug-ins used in the animation GUI. One animation plug-in was used to obtain

interaction graphics in the form shown in Fig. 8.16. A second animation plug-in

was used to obtain feedback in the form of message sequence charts (MSCs).

Figure 8.16 shows a representative snapshot of the application-specific dur-

ing the execution of the CPN model. The IP addresses configured by the in-

dividual nodes are shown as labels below the nodes. For an example, Ad-hoc
Node 3 has configured two IP addresses: 3ffe:100:3:405:3 and 3ffe:100:3:406:3.

8.5. The Animation Graphical User Interface 137

XML−RPC
client

XML−RPC
server

Animation
package

CPN
simulator

CPN Tools
GUI

Animation
plugins

Figure 8.15: Architecture of the model-based prototype.

Figure 8.16: Snapshot of the interaction graphics.

The convention is that the preferred IP address is the topmost address in the

list below the node. The entries in the DNS database are shown in the upper

left corner. It shows the entries for each of the three ad-hoc nodes. The two

numbers written at the top of each node are counters that provide information

about the number of packets on the incoming (left) and outgoing (right) inter-

faces of the nodes. Transmissions of advertisements from the gateways are

visualised by green dots. Transmission of payload packets are visualised using

read dots, and DNS packets are visualised using blue dots. Figure 8.16 shows

an example where Host 1 is transmitting a payload packet to Ad-hoc Node 3.

The user can move the nodes in the ad-hoc network thereby changing the

distances to the two gateways. It is also possible to define a flow from the

host in the core network to one of the nodes in the mobile ad-hoc network by

clicking on the read square positioned next to each of the ad-hoc nodes. The

square will change its colour to green once the CPN model has registered the

flow. The flow can be stopped again by clicking on the (now green) square next

to the mobile ad-hoc node. Finally, it is possible to force the transmission of an

advertisement from a gateway by clicking on the gateway.

Figure 8.17 shows an example of a MSC creating based on a simulation of

the CPN model. The MSC shows a scenario where Ad-hoc Node 3 makes a

Move and discovers that Gateway 2 is now the closest gateway. This causes it

to send a DNS update to the DNS server. The last part of the MSC shows the

host initiating a packet flow to Ad-hoc Node 3.

Graphical feedback from the execution of the CPN model is achieved by

138 Chapter 8. Model-based Prototyping of an Interoperability Protocol

Figure 8.17: Message sequence chart generated by the animation GUI.

if (event = "none" andalso n<>0)
then events
else events^^[event]

events

n

Int.mod(n+1,MAXCOUNT)

Produce

input ();
output event;
action
if telebit.hasMoreEvents()
then case telebit.peekNextEvent() of
 "done" => "none"
 | _ => telebit.getNextEvent()
else "none"

Events

EVENTS

[]

Events

1 1`["none"]Count

INT

0

Figure 8.18: Poll module – Polling the animation GUI for events.

attaching code segments to the transitions in the CPN model. These code seg-

ments are executed whenever the corresponding transition occurs in the sim-

ulation/execution of the CPN model. As an example, the transition Route (see

Figure 8.9) has an attached code segment which invokes the primitives re-

quired for animating the transmission of packets in the core network.

The CPN model receives input from the animation GUI by polling the ani-

mation GUI for events. The Poll module shown in Figure 8.18 polls the anima-

tion GUI for events at regular intervals during the execution of the CPN model

and puts events into a list on the place Events, thereby implementing an event

queue between the animation GUI and the CPN model. Parts of the CPN model

that is to react on events from the animation GUI are linked to the Event place

and are able to consume events from the event queue. The transition Produce
polls the animation GUI for events.

8.6 Conclusions

We have presented our model-based prototype approach and demonstrated its

use on an interoperability protocol. In addition to providing a detailed specifi-

cation of the interoperability protocol via the constructed CPN model, the work

has also highlighted the following characteristics and aspects of a model-based

(virtual) prototyping approach:

Representation. The use of an animation GUI on top of the CPN model has

the advantage that the behaviour observed by the user is as defined by the

underlying model that formally specifies the design. The alternative would

have been to implement a separate visualisation package in, e.g., JAVA, totally

detached from the CPN model. We would then have obtained a model closer

to the actual implementation. The disadvantage of this approach would have

been a double representation of the dynamics of the interoperability protocol.

8.6. Conclusions 139

Transparency. The use of a domain specific graphical user interface (the

animation GUI) has the advantage that the design can be experimented with

and explored without having knowledge of the CPN modelling language. This

has been shown in practise at a demonstration to management with no CPN

knowledge.

Controllability. A model-based prototype is easier to control compared to

a physical prototype, in particular in the case of mobile nodes and wireless

communication where scenarios can be very difficult to control and reproduce.

Abstraction. Implementation details can be abstracted away and only the

key part of the design have to be specified in detail. As an example, in the

CPN model of the interoperability protocol we have abstracted away the rout-

ing mechanisms in the core and ad-hoc networks, and the mechanism used for

distribution of advertisements. Instead, we have modelled the service provided

by these components. The possibility of making abstraction means that it is

possible to obtain an executable prototype without implementing all compo-

nents.

Feasibility. The use of a model means that there is no need to invest in phys-

ical equipment and there is no need to setup the actual physical equipment.

This also makes it possible to investigate larger scenarios, e.g., scenarios that

may not be feasible to investigate with the available physical equipment.

Related Work

Integrated use of visualisation and formal modelling has also been considered

for CP-nets in earlier work in the area of embedded systems [142], telecommu-

nication protocols [14], pervasive electronic patient records [10], and software

for mobile phones [112]. The case studies in [10, 14, 112, 142] all applied the

MIMIC/CPN [141] package, an internal part of the DESIGN/CPN [37] tool. The

approach presented in this paper relies on an external application handling the

visualisation, which we find is a more flexible approach as it allows us to use

existing software libraries supporting different diagram types. In MIMIC/CPN,

input from the user is only possible by showing a modal dialog, meaning the

simulation of the model is stopped while the user is expected to input infor-

mation. The animation package presented in this paper avoids this by using

an asynchronous event queue polled by a transition in the model. As part of

future work, we plan to eliminate polling by allowing external applications to

directly produce and consume tokens on special external places.

Visualisation is also available in other tool sets. ExSpect [50] allows the

user to view the model state by associating widgets with the state of the model

and asynchronously interact with the model using simple widgets. In this way,

one creates simple user interfaces for displaying information and simple inter-

action. LTSA [116] allows users to animate models using an animation library

called SceneBeans [117]. In LTSA animations are tied to the models by asso-

ciating each animation activity with a clock; resetting a clock corresponds to

starting an animation sequence, and events in the animation corresponds to

progress of the clock. PNVis [99] associates objects of a 3D world with tokens,

and is suitable for modelling physical systems, but not immediately applicable

for network protocols. The Play-Engine [66] supports the developer in imple-

menting a prototype by inputting scenarios (play-in) via an application-specific

140 Chapter 8. Model-based Prototyping of an Interoperability Protocol

GUI, and then execute the resulting program (play-out). Compared to our ap-

proach this makes the model implicit as the model is created indirectly via the

input scenarios. We view an explicitly created model as an advantage when

the prototype is to serve as a basis for an actual implementation of the system.

The reason is that an implicitly created model is difficult to interpret as it is

automatically generated.

In conclusion, the work presented in this paper has demonstrated that using

CP-nets and the supporting computer tools for building a model-based proto-

type can be a viable and useful alternative to building a physical prototype.

Furthermore, the CPN model can also serve as a basis for further develop-

ment of the interoperability protocol, e.g., by refining the modelling of the rout-

ing and dissemination mechanisms to the concrete protocols that would be re-

quired to implement the solution. There is still a gap from the CPN model to

the actual implementation of the interoperability protocol, but the CPN mod-

elling has yielded an executable prototype that can be used to explore the solu-

tion and serve as a basis for the later implementation.

Acknowledgements. The authors gratefully acknowledge the support of

their colleagues in BAE SYSTEMS plc, Ericsson Microwave Systems AB and

Ericsson Danmark A/S, Telebit, and support from the UK, Swedish and Danish

MoDs under the EUCLID/Eurofinder programme, Project RTP6.22 (B2NCW).

The authors would also like to acknowledge Rolf Christensen for his contribu-

tions.

Chapter 9

A Game-theoretic Approach to

Behavioural Visualisation

The paper A Game-theoretic Approach to Behavioural Visualisation presented

in his paper has been submitted to the 2nd International Workshop on For-

mal Methods for Interactive Systems. The paper is a rewritten version of the

workshop paper [C4]. The original workshop paper, [C4], focuses on the intro-

duction of game coloured Petri nets, whereas the revised paper, [T5], focuses

on a general formal framework for visualisations of formal models.

[T5] M. Westergaard. A Game-theoretic Approach to Behavioural Visualisa-

tion. Submitted, 2007.

[C4] M. Westergaard. Game Coloured Petri Nets. In Proc. of 7th CPN Work-

shop, volume 579 of DAIMI-PB, pages 281–300, 2006.

The version presented here is identical to the submitted paper except for typo-

graphical changes.

141

9.1. Introduction 143

A Game-theoretic Approach
to Behavioural Visualisation

Michael Westergaard

Department of Computer Science, University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark,

Email: mw@daimi.au.dk

Abstract

To bridge the gap between domain experts and formal methods experts,

visualisations of the behaviour of formal models are used to let the domain

expert understand and experiment with the formal model. In this paper

we provide a definition of visualisations, founded in game-theory, which re-

gards visualisations as transition systems synchronised with formal mod-

els. We show example visualisations, use them to show winning strategies

of games, and demonstrate how an industrial application of formal models

benefited from this approach.

9.1 Introduction

Formal models are being used for specification and verification of complex sys-

tems [T4, 10, 61, 64, 94, 103], provide valuable insight into the workings of the

systems, and may detect errors early in the development process. One problem

of constructing formal models of systems is that the domain experts, who have

a lot of knowledge of the domain of the modelled system, typically have little

or no knowledge of formal models. At the same time, experts in formal models

typically have little knowledge of the system domain. One way to solve this is

to let the domain expert describe the system to the formal methods expert, who

then constructs a model for specification and validation. The drawback of this

approach is that it is very difficult to know whether problems in the model rep-

resent errors in the model itself or in the modelled system. The formal methods

expert typically does not know the domain well enough to make the judgement

for subtle errors, and the domain expert does not understand the formal model

or the error report well enough to make the judgement either. One way to facil-

itate the communication between the formal methods expert and the domain

expert is to create a domain-specific visualisation, which the domain expert can

inspect and stimulate. Examples of visualisations include cartoon-like repre-

sentations of, e.g., computers on a network and how they communicate or a live

updated UML sequence diagram [131] showing how messages are exchanged

between people working in a bank. We also provide an example of how this can

be used to visualise problems found in a model.

In order to facilitate communication of formal models, several tools [T3,

50, 66, 99, 117, 141, 149] have been conceived with the purpose of constructing

domain-specific visualisations. These tools rely on the methodology depicted

in Fig. 9.1. Here a domain expert writes a specification of the system. The

specification is usually written in natural language and only uses semi-formal

144 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

Domain expert

Specification Formal model

Visualisation

Explore and

understand

s2

s4

a

s3

b

s1

a

Figure 9.1: Methodology.

notation. Often the specification is vague and incomplete, maybe even self-

contradictory. In order to make the specification clear, complete, and consis-

tent, a formal executable model in constructed. This is usually done by a for-

mal methods expert, who is not an expert on the domain. Ambiguities can be

resolved during the construction of the model, which in itself makes the con-

struction worthwhile. In order to ensure that the formal model actually reflects

the specification, a visualisation is created. The behaviour of the visualisation

is defined by the formal model, so the visualisation reflects the state of the

model and changes in the model is reflected as updates to the visualisation.

The domain expert is now able to see and understand what happens in the for-

mal model, and can even interact with it. Inconsistencies between the model

and the specification can be resolved as the domain expert identifies things that

do not work as intended. We may then verify properties of the model required

by the domain, e.g., that a network protocol cannot cause dead-locks, knowing

that errors in the model probably reflect errors in the specification. One prob-

lem with tools facilitating the methodology in Fig. 9.1 is that they are built in

an ad-hoc manner, as an afterthought, when the gap between domain experts

and formal method experts becomes evident to researchers working with a spe-

cific formalism. Therefore the tools either mainly allows simple inspection of

the state of the model during execution or require that the modeler spends a

lot of time constructing a visualisation and integrating it with the model.

In this paper we propose a new, theoretically well-founded way to view vi-

sualisations, a declarative way for tying visualisations to a formal model, and a

way to visualise error reports from formal verification so the domain expert is

able to understand them. The idea is to view visualisations as transition sys-

tems, where the state of the system is what is visible to observers and labels

on transitions are changes to what is visible. We tie visualisations to models

by defining a synchronisation constraint [2], and require that the visualisation

is able to simulate [124] the model, to make the behaviour of the synchronised

product unconstrained by the visualisation and dictated by the model. This

formulation only allows the domain expert to observe the behaviour of the for-

mal model. In order to also allow the domain expert to provide input to the

formal model, we regard it as describing a game between the modelled system

and its surroundings; the domain expert then controls the environment and a

computer tool controls the modelled system. The definition is formal and gen-

eral, so it is possible to implement the method in computer tools supporting

any formalism using transition systems as semantical foundation.

The paper is structured as follows: Sect. 9.2 describes related work, and

in Sect. 9.3 some theoretical background material needed to understand the

rest of the paper is provided. Sect. 9.4 introduces and exemplifies the idea of

9.2. Related work 145

regarding visualisations as transition systems synchronised with formal mod-

els, and in Sect. 9.5 two example uses of visualisations are described, namely

a way to show winning strategies of games and an industrial application of the

method in Fig. 9.1. In Sect. 9.6, we sum up our conclusions.

9.2 Related work

Several tools supporting the methodology in Fig. 9.1 exist. In this section we

will describe some of them and discuss strengths and weaknesses of each.

ExSpect [50], a tool for modeling based on coloured Petri nets [91], allows

the user to view the state of models by associating widgets with the state of

the model, and allows users to asynchronously interact with the model using

simple widgets. The disadvantage of this approach is, firstly, that it is specific

to coloured Petri nets (as it relies on the special kind of state in a coloured

Petri net) and, secondly, that input from the user is made by switching from

one state of the system to another without formally executing a transition in

the model.

The BRITNeY Suite [C2, T3] and Mimic/CPN [141] are libraries which fa-

cilitate visualisation of coloured Petri net models. They provide an API which

can be used to define and update visualisations. By annotating a model, these

functions are called during execution of the model. The disadvantage of this

approach is that it is very inconvenient to have to change the model in order

to add a visualisation and the changes unnecessarily clutter the model. Fur-

thermore, these tools mainly focus on the state changes of the system, and ev-

erything shown to the user must be formulated as explicit updates, so it is not

possible to easily monitor the value of, e.g., a counter like in ExSpect. Finally,

these tools are unable to handle asynchronous input, which must be simulated

by polling.

LTSA [116], a tool for modeling using timed transition systems, allows users

to animate models using a library called SceneBeans [117, 149]. Animations

are tied to models by associating animation activities with clocks. Resetting

a clock corresponds to starting an animation sequence. The termination of an

animation sequence, or a user with a mouse, sends events which correspond to

progress of timers. The method is nice and declarative, but requires that we

have clocks at our disposal, limiting the method to timed formalisms.

PNVis [99] is an add-on for the Petri Net Kernel [169], a modular tool for

editing Petri nets [138]. PNVis associates 3D objects and locations in a 3D

world with certain aspects of the state of the model and is hence suitable for

modeling physical systems, but not aimed at systems that do not immediately

have a physical counter-part.

The Play-Engine [66] allows a prototype of a program to be implemented

by inputting scenarios (play-in) via an application-specific GUI. The resulting

program can then be executed (play-out). Compared to the approach of the

other described tools, this makes the model implicit as it is created indirectly

via the input scenarios. Furthermore, the Play-Engine relies on heavy-weight

techniques to perform visualisation as the model is given implicitly. In order to

decide how to execute the model, a complete model-checking step is performed

in each step, which is computationally expensive.

146 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

9.3 Theoretical background

Most of the work described in this paper has been developed in the context of

coloured Petri nets (CP-nets or CPNs) [91] and game coloured Petri nets (game

CPNs or game CP-nets) [C4], but applies to many other formalisms. In order to

reflect that, we formulate our method using transition systems, which consti-

tute the semantical foundation for several important modelling languages, e.g.

CP-nets and the π-calculus [124]. In this section we recall definitions of tran-

sition systems, synchronised products, simulations, game transition systems

(games), as well as winning strategies for games.

Definition 9.1 ((Labelled) Transition System) A transition system (TS)

is a tuple (S, T, δ, sI), where S is a (finite or infinite) set of states, T is a (finite

or infinite) set of transitions, δ ⊆ S × T × S is the transition relation, and

sI ∈ S is the initial state.

Four examples of transition systems can be seen in Fig. 9.2. Here we have

represented each state by a circle and transitions as arcs leading from one circle

to another. If there is an arc, labelled by a, leading from a circle labelled s1 to

a circle labelled s2, it represents a transition (s1, a, s2) ∈ δ. The initial state is

marked by an incoming arc with no source. We will later explain why some arcs

are dashed and some states are drawn using a double line. As an example, TS

(a) can be represented as T S = (S, T, δ, sI) where S = {s1, s2, s3, s4}, T = {a, b},
δ = {(s1, a, s2), (s2, b, s3), (s2, a, s4)}, and sI = s1.

Let T S = (S, T, δ, sI) be a transition system, s, s′ ∈ S two states, and

t ∈ T a transition. If (s, t, s′) ∈ δ, then t is said to be enabled in s and

the occurrence (execution) of t in s leads to the state s′. This is also writ-

ten s
t
−→ s′. A finite occurrence sequence, σ, is an alternating sequence of

states, si, and transitions, ti, written σ = s1
t1−→ s2

t2−→ · · · sn−1
tn−1

−−−→ sn where

(si, ti, si+1) ∈ δ for i = 1, . . . , n − 1, and s1 = sI . An infinite occurrence se-

quence, σ′, is an alternating sequence of states, si, and transitions, ti, written

σ′ = sI = s1
t1−→ s2

t2−→ · · · sn−1
tn−1

−−−→ sn
tn−→ · · · where (si, ti, si+1) ∈ δ for i ≥ 1,

and s1 = sI . We denote by Σω the set of all (finite and infinite) occurrence

sequences.

We often wish to synchronise two or more transition systems, and a way to

that is by forming a synchronised product by using a relation on transitions to

define which must occur simultaneously, as formalised in Def. 9.2.

op
s4

a

s3

b

s1

a

(a)

s1

s2

a

s3

b

s4

a b

c

(b)

(s1,

s1)

(s2,

s2)

(s3,

s4)

(a,a)

(b,b)

(c)

s1

s2

s3

a

b

(d)

Figure 9.2: Four transition systems. (c) is a synchronisation of (a) and (b), (d)

is equal to (c) except that its states and transitions have been renamed.

9.3. Theoretical background 147

Definition 9.2 (Synchronised Product, [2]) Let T Si = (Si, Ti, δi, sI i) for i =
1, . . . , n be transition systems. A synchronisation constraint is a relation S ⊆
T1×T2×· · ·×Tn. The synchronised product of T Si w.r.t. S is T S = (S, T, δ, sI)
with S = S1 × S2 × · · · × Sn, T = S, δ = {((s1, . . . , sn), (t1, . . . , tn), (s1

′, . . . , sn
′)) |

(t1, . . . , tn) ∈ T , (si, ti, si
′) ∈ δi for i = 1, . . . , n}, and sI = (sI1, sI2, . . . , sIn).

If we synchronise the TS (a) and TS (b) in Fig. 9.2 using the synchronisation

constraint S = {(a, a), (b, b)}, we obtain TS (c) (we have omitted states that

are not reachable from the initial state). We notice that it is not possible for

one of the TS to take a step autonomously using the above definition. We can

simulate this by adding a distinguished transition ∆ which leads from each

state to itself. In the case of the TS in Fig. 9.2(a), we would add ∆ to T and

{(s1,∆, s1), (s2,∆, s2), (s3,∆, s3), (s4,∆, s4)} to δ.

We often need to state that two transition systems behave in a similar way.

We do this by defining a simulation, which states that one TS is able to exhibit

the same behaviour as another (but not necessarily the other way around).

Definition 9.3 ((Strong) simulation [124]) Let T Si = (Si, T, δi, sI i) for i =
1, 2 be transition systems sharing transitions. A relation � ⊆ S1 ×S2 is a simu-

lation iff whenever two states are in the relation, s1 � s2, then for all transitions

α ∈ T , such that s1
α
−→ s1

′, there exists a s2
′ ∈ S2 such that s1

′ � s2
′ and s2

α
−→ s2

′.

We say that T S2 simulates T S1 if there exists a simulation � ⊆ S1 × S2 such

that sI1 � sI2.

In Fig. 9.2 both (a) and (b) can simulate (d) using the simulations �a= {(s1, s1),
(s2, s2), (s3, s3)} respectively �b= {(s1, s1), (s2, s2), (s3, s4)}.

If we look at a game like tic-tac-toe, we see that it has two players, cross and

naught. From the point of view of cross, it is only possible to add crosses to the

board, naughts are added “automatically” according to the rules of the game.

We want to reflect this in a transition system, so we split the transitions into

two disjoints sets: the transitions controllable by the system we are modelling,

and the transitions executed by the environment. We make the assumptions

about the surroundings explicit in the model, yet provide a clear distinction be-

tween assumptions about the surroundings and the specification of the system.

In the tic-tac-toe example, the action of adding a cross to the board is control-

lable by the modelled system and the action of adding a naught is not. Applying

this to formal modelling, transitions of the modelled system are controllable,

e.g., the actions of a network protocol, such as transmitting a packet or incre-

menting a counter, are controllable, whereas actions of the surroundings (e.g.,

a network), such as transmitting or altering a packet, are uncontrollable. Tran-

sitions of the environment formalise the assumptions about the surroundings

(e.g. whether the network is allowed to alter packets). In normal games, like

tic-tac-toe, we often also have some goal, e.g., ending up with three crosses in

one row. This is also the case when modelling systems as games; in the case of

a network protocol, a goal may be to successfully receive all packets in the cor-

rect order. A game is a TS where transitions are separated into disjoint sets:

controllable and uncontrollable. Additionally we add a set of winning (goal)

states. This is summarised in Def. 9.4.

Definition 9.4 (Game) A game (or game transition system) is a tuple (S, T u,

T c, δ, sI ,W), such that T u is a set of uncontrollable transitions and T c is

a set of controllable transitions such that T u ∩ T c = ∅, W ⊆ S is a set of

winning states, and (S, T u ∪ T c, δ, sI) is a transition system.

148 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

We can turn any TS in Fig. 9.2 into a game by splitting the transitions into

controllable and uncontrollable transitions and deciding which states are win-

ning. For example, if we take T c = {a}, T u = {b}, and W = {s4} we obtain a

game for TS (a). In the figure we have shown uncontrollable transitions using

dashed arcs. States in W are drawn using double lines.

A strategy is a function assigning to each state a controllable transition (if

no controllable transitions are enabled in a given state, we can just map the

state to any of the controllable transitions or add a distinguished transition ∆
to T c signifying “do nothing”). A winning strategy is a strategy, that ensures we

always end up in a winning state, irregardless of what uncontrollable moves

are chosen, i.e., a winning strategy is a “program” ensuring we and up in a good

state. Formally:

Definition 9.5 (Winning Strategy) Let (S, T u, T c, δ, sI ,W) be a game and

S : S → T c a strategy. An occurrence sequence

σ = s1
t1−→ · · ·

tn−1

−−−→ sn(· · ·) ∈ Σω, ti ∈ T
u ∪ T c is consistent with the strategy

iff ti ∈ T c =⇒ ti = S (si) for all i = 1, . . . , n(, . . .). An occurrence sequence, σ,

is maximal iff it is a) infinite, or b) finite, σ = s1
t1−→ · · ·

tn−1

−−−→ sn, and if sn
t
−→ s

for any s ∈ S then t ∈ T u. A strategy is a winning strategy iff all maximal

occurrence sequences, σ = s1
t1−→ · · ·

tn−1

−−−→ sn(· · ·) ∈ Σω with s1 = sI that are

consistent with the strategy satisfy ∃k ≥ 1 such that sk ∈W .

If we take T c = {a}, T u = {b}, and W = {s4} in Fig. 9.2(a), it is not possible

to obtain a winning strategy (the only strategy is the mapping from all states to

the transition a. The occurrence sequence s1
a
−→ s2

b
−→ s3 is consistent with that

strategy, but does not lead to s4) whereas we can obtain a winning strategy in

(b) using T c = {a, c}, T u = {b}, and W = {s4} (the strategy mapping states s1,

s3, and s4 to the transition a and s2 to c is winning).

In [18], an algorithm from [111] is instantiated to obtain an efficient (and

optimal) algorithm to decide whether a given finite game (i.e. a game where

|S|+ |T u|+ |T c| <∞) has a winning strategy and to extract that strategy. The

intuition of the algorithm is to calculate a minimal fix-point of all good states,

where all states in W are good and all states where we can take a controllable

step to a good state and all uncontrollable steps leading to a good state are

good.

In Fig. 9.2(a), the only state which can be marked as good is s4 (s3 is not

good as it has no successors, s2 not good as the b transition leads to s3, which is

not good, and in s1 a leads to s2, which is not good). In (b), initially s4 is good.

We can then mark s3 as good (as we can take an a transition to s4, which is

good). After that, we can mark s2 as good (c, which is controllable, leads to s3
and b, all uncontrollable transitions enabled in s2, lead to s4). Finally we can

mark s1 as good as both a and b lead to good states.

Using this algorithm, we can obtain a winning strategy for any game (if one

exists). Often we are not satisfied knowing whether a winning strategy exists.

If one does, we are interested in obtaining the winning strategy, as we can use

as a guide to execute our model so we reach a winning state. We often require a

counter example if no winning strategy exists so we can understand why. Until

now, when concluding that a given game does not have a winning strategy, the

best counter example we could provide was a list of all good states. This can be

useful for small examples, but for systems with millions or more states this is

not very useful. The purpose of the counter example is to convince a user that

it is not possible to have a winning strategy. If a user needs conviction, it is

probably because he thinks he knows a winning strategy. In this paper we will

9.4. Visualisations as game transition systems 149

Figure 9.3: Visualisations as transitions systems.

propose a new way of providing counter examples to the existence of winning

strategies. We let the user assume the role of the modelled system and let him

try out his winning strategy against the computer, which knows how to counter

all moves of the user. The user will try his winning strategy on a visualisation

of the model. We will go into more detail about this in Sect. 9.5.2.

9.4 Visualisations as game transition systems

The idea of this work is to view visualisations as game transition systems, syn-

chronised with formal models. The rationale behind the idea of considering

visualisations as transition systems is that we can consider what is visible in

the visualisation as a state and changes to what can be seen can be considered

as transitions. As an example, consider Fig. 9.3. The semi-circles represent

states of the visualisation and the rectangles are the labelled transitions lead-

ing from one state to another. In the left semi-circle we see one state, a person

is standing at the left of a line. If we take the transition in the leftmost rect-

angle, the person runs to the right and we reach the state in the semi-circle

in the middle of the figure, where the person is standing at the middle of the

line. Now one of two things can happen: either the person keeps running (the

transition to the upper right state), or the person gets tired and sits down (the

transition to the lower right state). This visualisation is a renaming of the TS

in Fig. 9.2(a), where “runs” corresponds to transition a, “gets tired and rests”

corresponds to transition b, and s1 . . . s4 corresponds to the various positions of

the person. The states are graphical images and the transitions are transfor-

mations of one graphical image to another, e.g., an animation.

If we allow all synchronisation between a visualisation and a model, the

behaviour of the synchronisation is not defined by the model, but by the model

and the visualisation in unison, so if we, e.g., create a visualisation consist-

ing of only one state and no transitions, the synchronisation is also without

behaviour, which is not what we want to obtain. We want the behaviour of

the synchronised system to be dictated by the model, and will only use the

visualisation to show what happens in the model. In order to do this, we

require that the visualisation is able to simulate the model. In that way,

the behaviour of the synchronisation is dictated entirely by the model. A

slight technicality is that the definition of a simulation (Def. 9.3) requires that

the two systems share transitions. We remove this requirement and only re-

quire that, given a synchronisation constraint S ⊆ T1 × T2, whenever s1 � s2,

then for all α ∈ T1 if s1
α
−→ s1

′ there exists a s2
′ ∈ S2 and a β ∈ T2 such

150 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

that s1
′ � s2

′, (α, β) ∈ S, and s2
β
−→ s2

′. This allows us to say that (c) in

Fig. 9.2 can be simulated by (a), (b), and (d), as we no longer care about the

exact names of the transitions. For example, (c) can be simulated by (a) using

the synchronisation constraint S = {((a, a), a), ((b, b), b)} and the simulation

�b= {((s1, s1), s1), ((s2, s2), s2), ((s3, s4), s3)}.
If we synchronise a model with a visualisation and require that the visu-

alisation is able to simulate the model, the execution is defined by the model

alone, which is fine if we only want to see the execution of the model. If we

also want to manipulate the execution, we need to loosen the requirement that

the visualisation must be able to simulate the model. Rather than allowing ar-

bitrary synchronisations, which would make it difficult to distinguish between

actions taken by the model itself and actions initiated by the user, we rely on

games. The idea is that the visualisation plays one side of a game and the

model plays the other side; controllable transitions of the visualisation corre-

sponds to uncontrollable transitions of the model and vice versa. We require

that the uncontrollable transitions of one side can simulate the controllable

transitions of the other side. This is formulated in Def. 9.6.

Definition 9.6 (Visualisation) Given a model as a game T SM = (SM , T u
M ,

T c
M , δM , sIM ,WM), a visualisation T SV = (SV , T

u
V , T

c
V , δV , sIV ,WV), and a

synchronisation constraint S ⊆ (T u
M × T

c
V) ∪ (T c

M × T
u
V), we say that T SV can

be used as a visualisation of T SM with S iff there exists a relation ∼⊆ SM × SV

such that whenever sM ∼ sV

• for all α ∈ T c
M if sM

α
−→ sM

′ there exist sV
′ ∈ SV , β ∈ T u

V such that

sM
′ ∼ sV

′, (α, β) ∈ S, and sV
β
−→ sV

′, and

• for all β ∈ T c
V if sV

β
−→ sV

′ there exist sM
′ ∈ SM , α ∈ T u

M such that

sM
′ ∼ sV

′, (α, β) ∈ S, and sM
β
−→ sM

′.

Furthermore we require that sIM ∼ sIV .

The definition captures the intuition that whenever the model makes a

move (a controllable transition in the model), the visualisation must be able

to show that, and whenever the user provides some stimulation (a controllable

transition in the visualisation), the model must be able to handle that and

execute a corresponding uncontrollable transition.

One way to generate simple visualisations, is to use other formalisms as

visualisation of our model. If we have created a model as a TS and need to

communicate the model to an engineer who does not understand it, but who

uses message sequence charts (MSC) on a daily basis (MSC can be seen as

simplified UML sequence diagrams [131]), we can simply create an MSC and

use it as visualisation of our model. In the following we present two visualisa-

tions that have proven themselves widely applicable and useful [T4,94] for de-

scribing complex systems to domain experts, namely message sequence charts

and cartoon-like visualisations created using a Java library called SceneBeans

[149]. The MSC visualisation is an instance of the idea of using another for-

malism as visualisation of the model. The SceneBeans library is used by the

LTSA tool as described in Sect. 9.2, but we use it in a way that makes it usable

for a much wider range of formal models, as we do not require that the model is

described as timed transition systems. The MSC visualisation exemplifies how

to construct a visualisation that allows us to only see the behaviour of a model

(not to manipulate it), whereas the SceneBeans visualisation allows us to see

and manipulate the behaviour of the system.

9.4. Visualisations as game transition systems 151

(a) (b) (c)

Figure 9.4: Simple MSC visualisations of the example from Fig. 9.2(a).

Example 1: Message sequence charts

Message sequence charts can be used either formally or informally to describe

the behaviour of systems. A MSC consists of a set of processes, shown as ver-

tical lines, which are able to exchange messages, represented as horizontal

arrows from the source of the message to the destination, or which can execute

internal events, represented as a dot on the process.

In its simplest form, this visualisation has a process for each transition and

shows an internal event on the corresponding process whenever a transition is

executed in the model. More formally, given a model T SM = (S, ∅, T, δ, sI ,W),
we define a visualisation T SV = (SV , TV , ∅, δV , sIV , ∅), where TV = T . The

set of states, SV consists of all possible message sequence charts with T as

processes. This is of course not manageable in reality (T may be infinite), so in

practise we create processes as transitions are executed. The initial state is a

MSC with processes T and no events, and transitions are enabled in s ∈ SV ,

s
t
−→ s′, if s′ ∈ SV is equal to s with an internal event added to the process t.

The synchronisation used is equality. Using this visualisation directly on the

model in Fig. 9.2(a), we can obtain the two leftmost visualisations in Fig. 9.4,

the leftmost MSC, (a), corresponds to the occurrence sequence s1
a
−→ s2

a
−→ s4

and the middle MSC, (b), corresponds to the occurrence sequence s1
a
−→ s2

b
−→ s3.

The MSCs are updated as the model is executed, and the versions shown here

are snapshots when no more transitions are enabled.

To make the visualisation more useful, we parametrise it with a function

mapping transitions to process names and event labels so we can rename

events and show “similar” events on a single process. Say the TS in Fig. 9.2(a)

models a runner on a track (like the system in Fig. 9.3). The runner starts at

the beginning of the track and runs towards the end. Optionally, the runner re-

fuses to run any further halfway through the track, but sits down and rests. If

we map the transition a to the process “Runner” and the event label “run” and b
to “Runner” and “rest”, we would obtain a visualisation as shown in Fig. 9.4(c)

for the occurrence sequence s1
a
−→ s2

b
−→ s3. This visualisation makes it easier

to see what was intended by the model than the ones in Figs. 9.4(a) and (b).

Synchronising visualisations with formal models using this technique is

very useful and allows us to observe what happens in the model, but it does

not allow us to interact with the model, e.g., to drive the model into states we

find interesting. The next example makes full use of the separation of tran-

sitions into controllable and uncontrollable transitions, and allows the user to

interact with the model using the visualisation.

Example 2: Visualisation using SceneBeans

The SceneBeans [149] library uses an XML specification for describing visu-

alisations and allows programs using it to interact with the visualisation by

152 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

invoking commands in the visualisation and receiving events from the visual-

isation. By invoking a command on a SceneBeans visualisation, it is possible

to change what is displayed on the screen, e.g. to move a graphical representa-

tion of a person, as in Fig. 9.3, and thereby provide feedback to the user. When

a user, e.g., clicks on an object in a visualisation, the visualisation can raise

an event, which can be handled by the application. We equate uncontrollable

transitions of a SceneBeans visualisation with the provided commands, and

controllable transitions with the events that can be raised by user interaction.

Using the SceneBeans library, it is possible to create a visualisation like

the one sketched in Fig. 9.3. We want to control the runner, so we switch the

transitions in Fig. 9.2(a), so the dashed arcs represent controllable transitions

and solid arcs represent uncontrollable transitions. The start of the track cor-

responds to the left of the line and the end of the track is at the right. When

we want the runner to progress along the track, we can click the figure rep-

resenting the runner to raise a “run”-event (corresponding to a controllable a
transition in the TS in Fig. 9.2(a)). If we do nothing when the runner is halfway

through the track (the middle state in Fig. 9.3), it is possible that the uncon-

trollable b transition is executed, leading to executing of the command “rest”,

which makes the runner sit down and rest.

This kind of visualisation is formalism-independent, but the visualisation

is heavily dependent on the model, as we need to support the required com-

mands and events. Furthermore the user is required to specify how events and

commands should be synchronised with the transitions of the model.

9.4.1 Tool support

Support for synchronising visualisations with formal models by regarding the

visualisations as games has been added to the BRITNeY Suite [C2, T3], a tool

for visualising formal models, typically created using coloured Petri nets.

The tool has been extended with an interface, written in Java, which gives

developers the ability to write their own programs interfacing with formal mod-

els. The interface, which can be seen in Fig. 9.5, informs a visualisation, i.e.

a class implementing the interface, of all enabled controllable transitions (line

2). The visualisation returns which controllable moves it would like to per-

form. The visualisation is informed whenever the computer makes a move

(line 4) and when a user-specified move is executed (line 3). The names con-

trollable/uncontrollable are from the point of view of the visualisation. The

tool is able to switch controllable/uncontrollable transitions so the visualisa-

tion can control the controllable transitions of the model if we wish to experi-

ment with the behaviour of the model, or control the uncontrollable transitions

of the model, allowing us to see how the model reacts to the surroundings. Fi-

nally, the visualisation is informed when there are no more enabled transitions

(the game is over, line 5). This can be used if the user should be alerted or

cleanup is needed when the game is over. Classes implementing this inter-

face act as both visualisation and synchronisation constraint. As uncontrollable
is not allowed to raise exceptions, visualisations implementing this interface

are able to execute a transition synchronised with any transition offered by the

model, so the visualisation’s uncontrollable transitions are able to simulate the

model’s controllable transitions. Additionally, if controllable (in line 2) returns

a subset of the transitions provided as parameter, the model is able to simulate

the controllable transitions of the visualisation. Thus, according to Def. 9.6, a

class implementing the interface in Fig. 9.5 can be used as visualisation of any

model.

9.4. Visualisations as game transition systems 153

public interface GameListener {
List<Transition> controllable(List<Transition> ts);
void controllable(Transition t);
void uncontrollable(Transition t);

5 void gameOver();
}

Figure 9.5: The GameListener interface.

Both of the visualisations presented in this section have been implemented

using this interface, so despite the simplicity of the interface, it is versatile. In

addition to the examples in this paper, the interface has also been used to im-

plement a visualisation which automatically generates form-filling dialogues

for CPN models (this visualisation is described in [C4]) as well as for ongoing

work on implementing a work-flow system on top of game CP-nets.

Fairness

If the purpose of a visualisation is to get acquainted with the model or the

modelled system, it is often reasonable to assume that a computer tool chooses

controllable transitions at random. This can often be done very quickly, how-

ever, and this can make it difficult for the user to interact with the model. To

overcome this, we may need to impose fairness during execution of the model.

A simple way to impose fairness is to make the game turn-based: the model

makes one uncontrollable transition, followed by a user-selected controllable

transition and so on until no transitions are enabled. If either of the players

have no possible moves (i.e. no controllable resp. uncontrollable transitions are

enabled) the turn is passed on to the other player. This approach is simple, easy

to understand, and easy to implement. The disadvantage is that, depending on

modelling detail, one player may gain an unfair advantage, and minor changes

may make it difficult for one player to keep up with the moves of the other. This

can be seen in the runner example in Fig. 9.2(a) (with T c = {b} and T u = {a}),
where we always end up in state s3 if we use this technique, as we need to

first choose an a transition. The turn is then passed on to the computer, which

chooses a b transition.

Another way to impose fairness is to give controllable transitions (from the

visualisation’s point of view) priority over uncontrollable transitions. This par-

ticularly useful for SceneBeans visualisations, where transitions of the model

are expected to be executed while the user is observing, but we want interac-

tion to happen immediately when the user requests it. The visualisation of the

runner will do nothing until a controllable transition has been chosen in the

runner example in Fig. 9.2(a) and Fig. 9.3. When the runner is in the state

s2, at the middle of the track, a user can force the runner along the track by

clicking on the graphical representation of the runner. If the user does nothing

for a while, the computer will choose the uncontrollable transition b, and the

runner will rest.

A third way to impose fairness is to make execution of transitions take time.

A simple way to do this is to let the execution of every transition take, say, 0.1
second. The advantages and disadvantages of this approach is the same as

those for turn-based execution. A slightly more involved way to use time to

impose fairness is to use a timed formalism such as timed automata [1]. In

this case, transitions may only be enabled for a certain amount of model-time

154 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

or only a certain amount of model-time after another transition. The idea is to

let model-time correspond to real time. The advantage of this approach is that

it is very general, and allows us to get a natural feeling of the behaviour of a

timed model, but the disadvantage is that timed models may be more difficult

to understand and this approach requires a timed formalism.

9.5 Use of visualisations

In this section we give two examples of use of visualisations. The first example

in an industrial case study, where visualisation is used to improve a specifica-

tion, using the methodology in Fig. 9.1, and the second example is to an appli-

cation to verification of games, where we use visualisations to convince domain

experts that no winning strategy exists (when it is believed that it should) as

well as providing a means to find out if the error is in the specification or the

formal model.

9.5.1 Industrial Case: Routing in Mobile Ad-hoc Networks

First, we look at an industrial application of visualisation, which uses an ear-

lier version of the BRITNeY Suite without support for visualisations as games.

The project is a collaboration between Ericsson Denmark A/S, Telebit and the

CPN group at the University of Aarhus. For more details about the project,

see [T4].

In Fig. 9.6, we see two visualisations created to visualise an interoperability

protocol for mobile ad-hoc networks. The protocol ensures that mobile ad-hoc

nodes (laptops) can communicate with a stationary host when on the move via

the nearest gateway. Each gateway owns a specific sub-net of IP addresses.

Based on the IP address of an ad-hoc node, it is possible to decide which gate-

way to use. The basic operation of the model is illustrated by the MSC in

Fig. 9.6 (top). The protocol is modelled using coloured Petri nets in a model

that contains modules, 54 places and 40 transitions. Altogether the model also

contains 1000 lines of inscriptions, 200 of which are used to drive the visual-

isation. The exact details of the protocol are out of scope of this paper. The

visualisation in Fig. 9.6 (bottom) makes it possible for the user to observe the

behavior of the system as packets, visualised by colored dots, flow along the

network and to provide stimuli to the protocol by dragging and dropping the

laptops to indicate the node movement. These visualisations have been used in

the project, both internally during protocol design, and externally, when pre-

senting the protocol to management and protocol engineers unfamiliar with

formal modeling.

The project uses the visualisations described in Sect. 9.4, namely a mes-

sage sequence chart and a SceneBeans visualisation. The visualisations have

been synchronised with the model using annotations of the model. One of the

problems we encountered during the project, was this need to add annotations

to the model. For example, in Fig. 9.7, we see the annotation “input. . . ”, used

to show packets flow. This is by far the largest annotation of the model, and

clutters it unnecessarily. Furthermore annotations have to be added for each

visualisation, making it difficult to turn off one or more visualisations, in order

to focus on e.g. the MSCs. Using the approach described in this paper, we cre-

ate our visualisations and for each specify how it should be synchronised with

the model (in fact we would not need to specify synchronisation constraints as

the implementation uses conventions, such as naming, to generate these au-

tomatically), and we can then turn off each visualisation independently and

9.5. Use of visualisations 155

Figure 9.6: Visualisations used in an industrial project.

the model would be left uncluttered. Another major problem encountered in

the project was that we wanted the model to perform actions when idle, e.g.

send gateway advertisements, and react immediately when we moved a node

or wanted to send packets. We only partially solved this by polling the visual-

isation for changes, which made the visualisation almost work, but was never

satisfactory. Creating the visualisations as games, as proposed in this paper,

making slight changes to the model in order to make it a game (make e.g. the

movement of the ad-hoc nodes uncontrollable in the model), and using one of

the fairness constraints discussed in Sect. 9.4.1, it is possible to make inter-

action with the model much more natural as the visualisation will we able to

force actions in the formal model as desired.

156 Chapter 9. A Game-theoretic Approach to Behavioural Visualisation

RoutingInformation

CmdxPacket

RoutingInformation

Route

Core
Network

I/OI/O

(RECEIVE nhipadr,
{src = srcipadr,dest=destipadr,cont=content})

(ROUTING,
 {src = srcipadr,
 dest = destipadr,
 cont = content})

input (srcipadr, nhipadr, content);
output ();
action
if String.substring (srcipadr, 13, 1) = "1"
then show_flow(srcipadr, nhipadr, content)
else show_flow((String.substring (srcipadr, 0, 16)) ^ "1",
nhipadr, content)

[("3ffe:100:3:405::","3ffe:100:3:401::3"),
 ("3ffe:100:3:406::","3ffe:100:3:401::4")]

[nhipadr =
 FindNextHop
 routinginfo destipadr]

routinginfo

Figure 9.7: Part of the routing mechanism.

9.5.2 Visualising winning strategies

Hitherto, we have used visualisations primarily for validation that the formal

model reflects the intended behaviour by letting a domain expert stimulate and

observe the model using visualisations. Now, we will turn to using visualisa-

tion for communicating the result of formal verification, i.e., convincing users

that no winning strategy exists, which is decided using an algorithm from [18]

as outlined in Sect. 9.3. The purpose of a counter example is to convince users

that it is impossible to have a winning strategy, so we let the domain expert

assume the role of the modelled system and let him try out ideas for winning

strategies. At the same time we let a computer tool take charge of the uncon-

trollable actions according to the counter example that has been calculated.

The user is urged to reach a winning state while the tool executes uncontrol-

lable transitions to prevent that (by ensuring that the user is not allowed the

ability to execute a transition leading to a good state). We can do this using

the formal model, but often the formal methods expert does not have enough

domain knowledge to have understand why the system should have winning

strategy, so the domain expert, who has little knowledge of the modelling lan-

guage, has to find out whether the error is in the model or in the specification.

Instead we let the domain expert control the controllable transitions of the

model using a visualisation (the computer tool is able to let the visualisation

assume control of either the controllable or uncontrollable transitions, as de-

scribed in Sect. 9.4.1). We let the user stimulate the model in any way seen

fit (according to the supposed winning strategy), and eventually the model will

perform an unforeseen move (error in the specification) or the model will per-

form a disallowed move (error in the model).

In the example in Fig. 9.2(a), we may think we have a winning strategy:

always pick transition a. This leads to the winning state s4, right? The com-

puter tool knows that the only good state is s4, and will stay clear of it. If we

let the user use the visualisation in Fig. 9.3, he would first click the runner to

progress to s2. The tool then executes the b transition as it knows that s4 is

good, but s3 is not. The game is over and the user is hopefully convinced that

it is impossible to ensure we end up in a winning state.

9.6 Conclusion and future work

In this paper we have given a theoretical foundation for viewing visualisa-

tions as game transition systems synchronised with formal models, providing

9.6. Conclusion and future work 157

a uniform and general framework for coupling formal models and behavioural

visualisation. We have used game-theory to separate output from and input to

the model and given two concrete examples of visualisations. We have demon-

strated how an industrial case can benefit from using the method described

in this paper. Furthermore, we have sketched how this can be used to create

counter-examples to the existence of a winning strategy in games, so domain

experts with no knowledge of the formalism used can understand them.

Future work includes using this technique in industrial settings. The visu-

alisations described in this paper is already distributed as part of the BRITNeY

Suite, and ongoing work on creating a detailed model of TCP/IP uses the MSC

visualisation to communicate the model to protocol experts.

Index

address prefix, 125, 126

animation GUI, 127

arc expressions, 130

backedge, 94, 97

backedge table, 38, 94, 97

backtracking, 97

binding, 131

binding element, 131

bounded, 26

code segments, 138

collision list, 97

colour set, 129

combinator function, 106

compressed state descriptor, 15, 94, 95

concurrently, 29

consistent, 148

controllable transitions, 56, 147

data values, 128

dead-locks, 29

definitely assigned, 10

deterministic transition relation, 35, 95

enabled, 26, 95, 130, 146

evaluating, 130

external places, 139

finite occurrence sequence, 146

formal model, 5

fusion places, 60

game, 56, 147

game coloured Petri nets, 56

gateway advertisements, 125

good states, 148

graphical model, 45

guard expression, 133

hash collision, 30

hash collisions, 94, 96

hash function, 95

infinite occurrence sequence, 146

initial state, 25, 56, 95, 146

instances, 133

interaction graphics, 136

interface identifier, 126

invalid state, 104

invariant property, 26

labelled transition system (LTS), 25

marking, 106

mathematical model, 45

maximal, 148

model checking, 25

model-based prototype, 124

monotone, 32

occur, 130

occurrence, 26, 95, 146

occurrence sequence, 26

occurrence sequences, 146

places, 106, 128

port place, 129

preferred gateway, 135

progress measure, 31

progress value, 31

reachable, 26

regress edges, 33

requirements specification, 4

simulates, 147

simulation, 13, 147

socket place, 129

state descriptor, 14

state explosion problem, 14, 27

state number, 94, 97

state space, 95

state table, 38, 94, 95

states, 25, 56, 95, 146

strategy, 148

submodules, 128

substitution transitions, 128

successor states, 25, 56

sweep, 33

synchronisation constraint, 58, 147

synchronised product, 147

159

160 Index

system requirements, 62

transition relation, 25, 56, 95, 146

transition system, 146

transitions, 25, 95, 146

type, 106

uncontrollable transitions, 56, 147

unfolding, 37

user requirements, 62

variables, 131

visualisation, 58, 150

waiting set, 95

winning states, 56, 147

winning strategy, 148

Bibliography

Papers part of this thesis

[T1] T. Mailund and M. Westergaard. Obtaining Memory-Efficient Reacha-

bility Graph Representations Using the Sweep-Line Method. In Proc.

of TACAS’04, volume 2988 of LNCS, pages 177–191. Springer-Verlag,

2004.

[T2] M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge. The Com-

Back Method – Extending Hash Compaction with Backtracking. In Proc.

of ATPN’07, volume 4546 of LNCS, pages 446–464. Springer-Verlag,

2007.

[T3] M. Westergaard and K.B. Lassen. The BRITNeY Suite Animation Tool.

In Proc. of ATPN’06, volume 4024 of LNCS, pages 431–440. Springer-

Verlag, 2006.

[T4] L.M. Kristensen, M. Westergaard, and P.C. Nørgaard. Model-based Pro-

totyping of an Interoperability Protocol for Mobile Ad-hoc Networks. In

Proc. of IFM’05, volume 3771 of LNCS, pages 266–286. Springer-Verlag,

2005.

[T5] M. Westergaard. A Game-theoretic Approach to Behavioural Visualisa-

tion. Submitted, 2007.

Papers co-authored by the author of this thesis

[C1] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stiss-

ing, M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for Edit-

ing, Simulating, and Analysing Coloured Petri Nets. In Proc. of ATPN’03,

volume 2679 of LNCS, pages 450–462. Springer-Verlag, 2003.

[C2] M. Westergaard. BRITNeY suite website. Online: wiki.daimi.au.
dk/britney/.

[C3] M. Westergaard. Building Verifiable Software Prototypes using Coloured

Petri Nets. Progress report, Department of Computer Science, Univer-

sity of Aarhus.

[C4] M. Westergaard. Game Coloured Petri Nets. In Proc. of 7th CPN Work-

shop, volume 579 of DAIMI-PB, pages 281–300, 2006.

161

162 Bibliography

[C5] M. Westergaard. The BRITNeY Suite: A Platform for Experiments. In

Proc. of 7th CPN Workshop, volume 579 of DAIMI-PB, pages 97–116,

2006.

[C6] M. Westergaard and K.B. Lassen. Building and Deploying Visualizations

of Coloured Petri Net Models Using BRITNeY animation and CPN Tools.

In Proc. of 6th CPN Workshop, volume 576 of DAIMI-PB, pages 119–136,

2005.

Other references

[1] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126(2):183–235, 1994.

[2] A. Arnold. Finite transition systems. Semantics of communicating sys-

tems. Prentice-Hall, 1994.

[3] ASCoVeCo Project webpage. Online: www.daimi.au.dk/∼ascoveco/.

[4] T. Ball and S.K. Rajamani. The SLAM project: debugging system soft-

ware via static analysis. In Proc. of POPL’02, pages 1–3. ACM Press,

2002.

[5] K. Beck. Test Driven Development: By Example. Addison-Wesley Profes-

sional, November 2002.

[6] G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In

Proc. of CAV’03, volume 2725 of LNCS, pages 433–445. Springer-Verlag,

2003.

[7] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and

Tools. In Lectures on Concurrency and Petri Nets, volume 3098 of LNCS,

pages 87–124. Springer-Verlag, 2004.

[8] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking

withoud BDDs. In Proc. of TACAS’99, volume 1579 of LNCS, pages

193–207. Springer-Verlag, 1999.

[9] J. Billington, M.C. Wilbur-Ham, and M.Y. Bearman. Automated protocol

Verification. In Proc. of IFIP WG 6.1 5th International Workshop on

Protocol Specification, Testing, and Verification, pages 59–70. Elsevier,

1985.

[10] C. Bossen and J.B. Jørgensen. Context-descriptive prototypes and their

application to medicine administration. In Proc. of DIS’04, pages 297–

306. ACM Press, 2004.

[11] W.S. Brainerd and L.H. Landweber. Theory of Computation. John Wiley

& Sons, Inc., 1974.

[12] R.E. Bryant. Graph Based Algorithms for Boolean Function Manipula-

tion. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[13] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-

bolic Model Checking: 1020 States and Beyond. Information and Compu-

tation, 98(2):142–170, 1992.

Bibliography 163

[14] C. Capellmann, S. Christensen, and U. Herzog. Visualising the Be-

haviour of Intelligent Networks. In Services and Visualisation, Towards

User-Friendly Design, volume 1385 of LNCS, pages 174–189. Springer-

Verlag, 1998.

[15] L. Cardelli, G. Ghelli, and A.D. Gordon. Types for the Ambient Calculus.

To Appear in I&C special issue on TCS’2000, 2001.

[16] L. Cardelli and A.D. Gordon. Anytime, Anywhere: Modal Logics for

Mobile Ambients. In Proc. of POPL’00, pages 365–377. ACM Press,

2000.

[17] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer

Science, 240(1):177–213, 2000.

[18] F. Cassez, A. David, F. Emmanuel, K.G. Larsen, and D. Lime. Efficient

On-the-fly Algorithms for the Analysis of Timed Games. In Proc. of CON-

CUR’05, volume 3653 of LNCS, pages 66–80. Springer-Verlag, 2005.

[19] T. Cattel. Modelling and Verification of sC++ Applications. In Proc.

of TACAS’98, volume 1384 of LNCS, pages 232–248. Springer-Verlag,

1998.

[20] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web Ser-

vices Description Language (WSDL) Version 2.0 Part 1: Core Language.

Online: www.w3.org/TR/wsdl20/.

[21] G. Chiola, S. Donatelli, and G. Franceschinis. Priorities, Inhibitor Arcs

and Concurrency in P/T nets. In Proc. of ATPN’91, pages 182–205, 1991.

[22] S. Christensen and N.D. Hansen. Coloured Petri Nets Extended with

Channels for Synchronous Communication. In Proc. of ATPN’94, volume

815 of LNCS, pages 159–178. Springer-Verlag, 1994.

[23] S. Christensen, J.B. Jørgensen, and L.M. Kristensen. Design/CPN—A

Computer Tool for Coloured Petri Nets. In Proc. of TACAS’97, volume

1217 of LNCS, pages 209–223. Springer-Verlag, 1997.

[24] S. Christensen and L. M. Kristensen. State Space Analysis of Hier-

archical Coloured Petri Nets. Petri Net Approaches for Modelling and

Validation, Lincom Studies in Computer Science 01, pages 1–16, 2003.

[25] S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method

for State Space Exploration. In Proc. of TACAS’01, volume 2031 of

LNCS, pages 450–464. Springer-Verlag, 2001.

[26] S. Christensen, L.M. Kristensen, and T. Mailund. Condensed State

Spaces for Timed Petri Nets. In Proc. of ATPN’01, volume 2075 of LNCS,

pages 101–120. Springer-Verlag, 2001.

[27] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,

1999.

[28] E. M. Clarke, O. Grumberg, M. Minna, and D. Peled. State Space Re-

duction using Partial Order Techniques. Journal on Software Tools for

Technology Transfer, 2(3):279–287, 1999.

[29] T. Clausen and P. Jacquet. Optimised Link State Routing Protocol

(OLSR). RFC 3626, October 2003.

164 Bibliography

[30] CMMI Product Team. CMMI for Development, Version 1.2. Tech-

nical report, Carnegie Mellon University, 2006. CMU/SEI-2006-TR-

008; online version: www.sei.cmu.edu/publications/documents/
06.reports/06tr008.html.

[31] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algo-

rithms. The MIT Press, 1990.

[32] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Con-

cepts and Design. Addison-Weslay, 3rd edition, 2001.

[33] CPN Tools webpage. Online: www.daimi.au.dk/CPNTools/.

[34] The CPN Group at University of Aarhus. Online: www.daimi.au.dk/
CPnets.

[35] APN ML Protocol Manual. Online: wiki.daimi.au.dk/cpn2000/
apn ml protocol manual.wiki.

[36] J. Desel and W. Reisig. Place/Transition Petri Nets. In Lectures on Petri

nets I: Basic Models, volume 1491 of LNCS, pages 122–173. Springer-

Verlag, 1998.

[37] Design/CPN website. Online: www.daimi.au.dk/designCPN/.

[38] P.C. Dillinger and P. Manolios. Fast and accurate Bitstate Verification

for SPIN. In Proc. of SPIN 2004, volume 2989 of LNCS. Springer-Verlag,

2004.

[39] M. Dowson. The Ariane 5 software failure. SIGSOFT Softw. Eng. Notes,

22(2):84, 1997.

[40] M. Dwyer, J. Hatclif, V. Prasad, and Robby. Exploiting Object Escape and

Locking Information in Partial Order Reductions for Concurrent Object-

Oriented Programs, 2004. Formal Methods in System Designs. (to ap-

pear).

[41] Eclipse webpage. Online: www.eclipse.org/.

[42] S. Edelkamp, A.L. Lafuente, and S. Leue. Directed Explicit Model Check-

ing with HFS-SPIN. In Proc. of SPIN’01, volume 2057 of LNCS, pages

57–79. Springer-Verlag, 2001.

[43] N. Eén and N. Sörensson. An Extensible SAT-solver. In Proc. of SAT’03,

volume 2919 of LNCS, pages 502–518. Springer-Verlag, 2003.

[44] P. Ehn and M. Kyng. Cardboard Computers: Mocking-it-up or Hands-on

the Future. In Design at Work: Cooperative Design of Computer Systems,

pages 169–196. Lawrence Erlbaum Associates, Inc., 1992.

[45] I.K. El-Far and J.A. Whittaker. Model-based Software Testing. Encyclo-

pedia of Software Engineering, 1:825–837, 2002.

[46] E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal

Methods in System Design, 9, 1996.

[47] Ericsson Danmark A/S, Telebit. Online: www.tbit.dk; no longer avail-

able as the company has been taken over, announcement in danish at

www.tietoenator.dk/default.asp?path=487,612,26101,26490.

Bibliography 165

[48] E.E. Euler, S.D. Jolly, and H.H. Curtis. The failures of the Mars Climate

Orbiter and Mars Polar Lander: A perspective from the people involved.

In Proc. of Guidance and Control 2001. American Astronautical Society,

2001.

[49] S. Evangelista and J.-F. Pradat-Peyre. Memory Efficient State Space

Storage in Explicit Software Model Checking. In Proc. of SPIN’05, vol-

ume 3639 of LNCS, pages 43–57. Springer-Verlag, 2005.

[50] The ExSpect tool webpage. Online: www.exspect.com.

[51] The FeaVer Feature Verification System webpage. Online: cm.bell-labs.
com/cm/cs/what/feaver/.

[52] A. Finkel. A Minimal Coverability Graph for Petri Nets. In Proc. of

ATPN’90, pages 1–21, 1990.

[53] G. Gallasch and L.M. Kristensen. A Communication Infrastructure for

External Communication with Design/CPN. In Proc. of Third CPN Work-

shop, volume 554 of DAIMI-PB, pages 79–93, 2001.

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[55] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[56] J. Geldenhuys. State Caching Reconsidered. In Proc. of SPIN’04, volume

2989 of LNCS, pages 23–38. Springer-Verlag, 2004.

[57] J. Geldenhuys and A. Valmari. A Nearly Memory-Optimal Data Struc-

ture for Sets and Mappings. In Proc. of SPIN 2003, volume 2648 of

LNCS, pages 136–150. Springer-Verlag, 2003.

[58] P. Godefroid. Using Partial Orders to Improve Automatic Verification

Methods. In Proc. of CAV’90, volume 531 of LNCS, pages 175–186.

Springer-Verlag, 1990.

[59] P. Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems—An Approach to the State-Explosion Problem, volume 1032 of

LNCS. Springer-Verlag, 1996.

[60] P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Re-

visited. Formal Methods in System Design, 7(3):227–241, 1995.

[61] S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised

WAP Wireless Transaction Protocol. In Proc. of ATPN’02, volume 2360

of LNCS, pages 182–202. Springer-Verlag, 2002.

[62] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specifi-

cation, The (3rd Edition). The Java Series. Prentice Hall, 2005.

[63] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau H.F Nielsen, A. Kar-

markar, and Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework

(Second Edition). Online: www.w3.org/TR/soap12-part1/.

[64] B. Han and J. Billington. Formalising the TCP Symmetrical Connection

Management Service. In Proc. of DASD’03, pages 178–184. SCS, 2003.

166 Bibliography

[65] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci-

ence of Computer Programming, 8(3):231–274, June 1987.

[66] D. Harel and R. Marelly. Come, Let’s Play. Springer-Verlag, 2003.

[67] D. Harel and P.S. Thiagarajan. Message Sequence Charts. In UML

for Real: Design of Embedded Real-Time Systems, pages 77–105. Kluver

Academic Publishers, 2003.

[68] R. Hauser and J. Koehler. Compiling Process Graphs into Executable

Code. In Proc. of GPCE’04, volume 3286 of LNCS, pages 317–336.

Springer-Verlag, 2004.

[69] R. Hinden and S. Deering. Internet Protocol Version 6 (IPv6) Addressing

Architecture. RFC 3513, April 2003.

[70] C.A.R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.

[71] C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[72] G.J. Holzmann. An Improved Protocol Reachability Analysis Technique.

Software, Practice and Experience, 18(2):137–161, 1988.

[73] G.J. Holzmann. Algorithms for Automated Protocol Validation. AT&T

Technical Journal, 69(2):32–44, 1990.

[74] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall International Editions, 1991.

[75] G.J. Holzmann. State Compression in SPIN: Recursive Indexing and

Compression Trianing Runs. In Proc. of SPIN’97, 1997.

[76] G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in

System Design, 13:289–307, 1998.

[77] G.J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[78] G.J. Holzmann and A. Puri. A Minimized Automaton Representation of

Reachable States. Journal on Software Tools for Technology Transfer,

2(3):270–278, 1999.

[79] G.J. Holzmann and M.H. Smith. A practical method for verifying event-

driven software. In Proc. of ICSE’99, pages 597–607. IEEE Comp. Soc.

Press, 1999.

[80] G.J. Holzmann and M.H. Smith. Automating Software Feature Verifica-

tion. Bell Labs Technical Journal, 5(2):72–87, 2000.

[81] T. Huckle. Collection of software bugs. Online: www5.in.tum.de/
∼huckle/bugse.html, February 28 2007.

[82] C. Huitema. IPv6: The New Internet Protocol. Prentice-Hall, 1998.

[83] HyperSAT website. Online: www.cs.ubc.ca/∼babic/index hypersat.
htm.

[84] Standard for Modeling and Simulation High Level Architecture. IEEE

standard 1516.

Bibliography 167

[85] C.N. Ip and D.L. Dill. Better Verification Through Symmetry. Formal

Methods in System Design, 9, 1996.

[86] Information technology – Computer graphics and image processing – The

Virtual Reality Modeling Language (VRML) – Part 1: Functional speci-

fication and UTF-8 encoding. ISO/IEC 14772-1:1997.

[87] Software and system engineering – High-level Petri nets – Part 1: Con-

cepts, definitions and graphical notation. ISO/IEC 15909-1:2004.

[88] JavaBeans(TM) Specification 1.01 Final Release. Online: java.sun.
com/products/javabeans/docs/spec.html.

[89] Java Plug-in Framework website. Online: jpf.sourceforge.net/.

[90] JBuilder website. Online: www.codegear.com/Products/JBuilder.

[91] K. Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods and

Practical Use. Volume 1: Basic Concepts. Springer-Verlag, 1992.

[92] K. Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods and

Practical Use. Volume 2: Analysis Methods. Springer-Verlag, 1994.

[93] K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri

Nets. Formal Methods in System Design, 9, 1996.

[94] J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Ad-

viser Portal Bank System. In REBNITA’05, 2005.

[95] JSR 56: Java Network Launching Protocol and API. Online: jcp.org/
en/jsr/detail?id=56.

[96] T. Kam. State Minimization of Finite State Machines using Implicit

Techniques. PhD thesis, University of California at Berkeley, 1995.

[97] R.M. Karp and R.E. Miller. Parallel Program Schemata. Journal of

Computer and System Sciences, 4:147–195, 1969.

[98] B.W. Kernigan and D.M Ritchie. The C Programming Language (2nd

Edition). Prentice-Hall, 1988.

[99] E. Kindler and C. Páles. 3D-Visualization of Petri Net Models: Concept

and Realization. In Proc. of ATPN’04, volume 3099 of LNCS, pages 464–

473. Springer-Verlag, 2003.

[100] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-view-

controller User Interface Paradigm in Smalltalk-80. Journal of Object-

Oriented Computing, 1(3):26–49, August/September 1988.

[101] L.M. Kristensen. Ad-hoc Networking and IPv6: Modelling and Valida-

tion. Online: www.pervasive.dk/projects/IPv6/IPv6 summary.

[102] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s

Guide to Coloured Petri Nets. Journal on Software Tools for Technol-

ogy Transfer, 2(2):98–132, 1998.

[103] L.M. Kristensen and K. Jensen. Specification and Validation of an Edge

Router Discovery Protocol for Mobile Ad-hoc Networks. In Integration

of Software Specification Techniques for Application in Engineering, vol-

ume 3147 of LNCS, pages 248–269. Springer-Verlag, 2004.

168 Bibliography

[104] L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method

for Safety Properties. In Proc. of FME’02, volume 2391 of LNCS, pages

549–567. Springer-Verlag, 2002.

[105] L.M. Kristensen and T. Mailund. Path Finding with the Sweep-Line

Method using External Storage. In Proc. of FEM’03, volume 2885 of

LNCS, pages 319–337. Springer-Verlag, 2003.

[106] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata-Theoretic Ap-

proach to Branching-Time Model Checking. Journal of the ACM, 47(2):

312–360, 2000.

[107] K.G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time

embedded software using UPPAAL-TRON: an industrial case study. In

Proc. of EMSOFT’05, pages 299–306. ACM Press, 2005.

[108] X. Leroy. The Objective Caml system release 3.10: Documentation and

user’s manual. Online: caml.inria.fr/pub/docs/manual-ocaml/,

2007.

[109] N.G. Leveson and C.S. Turner. Investigation of the Therac-25 Accidents.

IEEE Computer, 26(7):18–41, 1993.

[110] A. Lindem. OSPF for IPv6. Internet-draft, March 2005.

[111] X. Liu and S.A. Smolka. Simple Linear-Time Algorithms for Minimal

Fixed Points. In Proc. of ICALP’98, volume 1443 of LNCS, pages 53–64.

Springer-Verlag, 1998.

[112] L. Lorentsen, A-P Tuovinen, and J. Xu. Modelling Features and Fea-

ture Interactions of Nokia Mobile Phones Using Coloured Petri Nets.

In Proc. of ATPN’02, volume 2360 of LNCS, pages 294–313. Springer-

Verlag, 2002.

[113] B. Lindstrøm and L. Wells. Towards a Monitoring Framework for

Discrete-Event System Simulations. In Proc. of WODES’02, pages 127–

134. IEEE Comp. Soc. Press, 2002.

[114] R.J. Machado, K.B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Execu-

tion of UML Models with CPN Tools for Workflow Requirements Valida-

tion. In Proc. of 6th CPN Workshop, volume 576 of DAIMI-PB, pages

231–250, 2005.

[115] O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object Oriented Pro-

gramming in the BETA Programming Language. Addison-Wesley, 1993.

[116] J. Magee and J. Kramer. Concurrency – State Models and Java Pro-

grams. John Wiley & Sons, 1999.

[117] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical Ani-

mation of Behavior Models. In Proc. of 22nd International Conference on

Software Engineering, pages 499–508. ACM Press, 2000.

[118] T. Mailund. Sweeping the State Space — A Sweep-Line State Space Ex-

ploration Method. PhD thesis, Department of Computer Science, Uni-

versity of Aarhus, 2003.

[119] M. Mäkelä. Condensed Storage of Multi-Set Sequences. In Proc. of Work-

shop on Practical Use of High-level Petri Nets, volume 547 of DAIMI-PB,

pages 111–126, 2000.

Bibliography 169

[120] J. McAffer and J.-M. Lemieux. Eclipse Rich Client Platform: Designing,

Coding, and Packaging Java(TM) Applications. Addison-Wesley Profes-

sional, 2005.

[121] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[122] A.M. Mikkelsen. On-the-fly LTL Model Checking in Design/CPN. Mas-

ter’s thesis, Dept. of Computer Science, University of Aarhus, 2001.

[123] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[124] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cam-

bridge University Press, 1999.

[125] R. Milner. Bigraphical Reactive Systems. In Proc. of CONCUR’01,

volume 2154 of LNCS, pages 16–35. Springer-Verlag, 2001.

[126] R. Milner, R. Harper, and M. Tofte. The Definition of Standard ML. MIT

Press, 1990.

[127] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes.

Information and Computation, 100(1):1–77, 1992.

[128] K.L. Morse, M. Lightner, R. Little, B. Lutz, and R. Scrudder. Enabling

Simulation Interoperability. Computer, 39(1):115–117, 2006.

[129] Remote Sensing Satellites. Online: earthobservatory.nasa.gov/
Library/RemoteSensingAtmosphere/remote sensing5.html.

[130] P.C. Nørgaard. NCW Routing in Tactical Networks. Ericsson Danmark

A/S, Telebit. Technical Report.

[131] Object Management Group. Unified Modeling Language (UML), Version

2.1.1. Online: www.omg.org/technology/documents/formal/uml.
htm, 2007.

[132] C. Ouyang and J. Billington. On Verifying the Internet Open Trad-

ing Protocol. In Proc. of 4th International Conference on Electronic

Commerce and Web Technologies, volume 2738 of LNCS, pages 292–302.

Springer-Verlag, 2003.

[133] R. Pelánek. Typical Structural Properties of State Spaces. In Proc. of

SPIN’04, volume 2989 of LNCS, pages 5–22. Springer-Verlag, 2004.

[134] D. Peled. All from One, One for All: On Model Checking Using Rep-

resentatives. In Proc. of CAV’93, volume 697 of LNCS, pages 409–423.

Springer-Verlag, 1993.

[135] D. Peled. Combining Partial Order Reductions with On-the-fly Model

Checking. Formal Methods in System Design, 8:39–64, 1996.

[136] D. Peled. Ten Years of Partial Order Reduction. In Proc. of CAV’98,

volume 1427 of LNCS, pages 17–28. Springer-Verlag, 1998.

[137] C.E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

[138] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut

für Instrumentelle Mathematik, 1962. Schriften des IIM Nr. 2.

170 Bibliography

[139] C.A. Petri. Interpretations of Net Theory. St. Augustin: Gesellschaft für

Mathematik und Datenverarbeitung Bonn, Interner Bericht ISF-75–07,

Second Edition, 1976.

[140] Y.-M. Quemener and T. Jeron. Finitely Representing Infinite Reacha-

bility Graphs of CFSMs with Graph Grammars. In Proc. of FORTE’96,

pages 364–379, 1996.

[141] J.L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Simulation

Utility for Design/CPN. User’s Manual. Online: www.daimi.au.dk/
designCPN.

[142] J.L. Rasmussen and M. Singh. Designing a Security System by Means

of Coloured Petri Nets. In Proc. ATPN’96, volume 1091 of LNCS, pages

400–419. Springer-Verlag, 1996.

[143] W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical

Computer Science. Springer-Verlag, 1985.

[144] J.B. Jørgensen, K.B. Lassen, and W.M.P. van der Aalst. From Task De-

scriptions via Coloured Petri Nets Towards an Implementation of a New

Electronic Patient Record. In Proc. of 7th CPN Workshop, volume 579 of

DAIMI-PB, pages 17–35, 2006.

[145] Ó.R. Ribeiro and J.M. Fernandes. Some Rules to Transform Sequence

Diagrams into Coloured Petri Nets. In Proc. of 7th CPN Workshop, vol-

ume 579 of DAIMI-PB, pages 237–256, 2006.

[146] H.G. Rice. Classes of recursively enumerable sets and their decision

problems. Trans. Amer. Math Soc., 89:25–59, 1953.

[147] W.W. Royce. Managing the Development of Large Software Systems:

Concepts and Techniques. In Proc. of ICSE’87, pages 328–338. Computer

Society Press, 1987.

[148] Boolean satisfiability problem, June 29 2007. Wikipedia article: en.
wikipedia.org/wiki/Boolean satisfiability problem.

[149] SceneBeans webpage. Online: www-dse.doc.ic.ac.uk/Software/
SceneBeans.

[150] K. Schmidt. LoLA - A Low Level Analyser . In Proc. of ATPN’00, volume

1825 of LNCS, pages 465–474. Springer-Verlag, 2000.

[151] K. Schmidt. Using Petri Net Invariants in State Space Construction.

In Proc. of TACAS’03, volume 2619 of LNCS, pages 473–488. Springer-

Verlag, 2003.

[152] SLAM Project. Online: research.microsoft.com/slam/.

[153] S. Sørensen. Disk Based State Space Storage for Coloured Petri Nets.

Master’s thesis, Dept. of Computer Science, University of Aarhus, 2002.

[154] Spin Version 4: Language Reference. Online: spinroot.com/spin/
Man/promela.html.

[155] U. Stern and D.L. Dill. Improved Probabilistic Verification by Hash Com-

paction. In Correct Hardware Design and Verification Methods, volume

987 of LNCS, pages 206–224. Springer-Verlag, 1995.

Bibliography 171

[156] U. Stern and D.L. Dill. Using Magnetic Disk instead of Main Memory

in the Murphi Verifier. In Proc. of CAV’98, volume 1427 of LNCS, pages

172–183. Springer-Verlag, 1998.

[157] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM

Journal of Computing, 1(2):146–160, 1972.

[158] J. Toksvig. Design and Implementation of a Place Invariant Tool for

Coloured Petri Nets. Master’s thesis, Dept. of Computer Science, Uni-

versity of Aarhus, 1995.

[159] J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

[160] A. Valmari. Stubborn Sets for Reduced State Space Generation. In Ad-

vances in Petri Nets ’90, volume 483 of LNCS, pages 491–515. Springer-

Verlag, 1990.

[161] A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I:

Basic Models, volume 1491 of LNCS, pages 429–528. Springer-Verlag,

1998.

[162] W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All

the Way: From Requirements Via Colored Workflow Nets to a BPEL

Implementation of a New Bank System. In Proc. of OTM Conferences

(1), volume 3760 of LNCS, pages 22–39. Springer-Verlag, 2005.

[163] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another work-

flow language. Information Systems, 30(4):245–275, 2005.

[164] W.M.P. van der Aalst and K. van Hee. Workflow Management: Models,

Methods, and Systems. MIT Press, 2002.

[165] S. Vanit-Anunchai, J. Billington, and G.E. Gallasch. Sweep-line Analy-

sis of DCCP Connection Management. In Proc. of 7th CPN Workshop,

volume 579 of DAIMI-PB, pages 157–176, 2006.

[166] M. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic

Program Verification. In In proc. of IEEE Symposium on Logic in Com-

puter Science, pages 322–331, 1986.

[167] Visual Studio website. Online: msdn.microsoft.com/vstudio/.

[168] P. Vixie. Dynamic Updates in the Domain Name System. RFC 2136,

April 1997.

[169] M. Weber and E. Kindler. The Petri Net Kernel. In Petri Net Technolo-

gies for Modeling Communication Based Systems, volume 2472 of LNCS,

pages 109–123. Springer-Verlag, 2003.

[170] D. Winer. XML-RPC Specification. Online: www.xmlrpc.org/spec.

[171] P. Wolper and P. Godefroid. Partial Order Methods for Temporal Verifi-

cation. In Proc. of CONCUR’93, volume 715 of LNCS. Springer-Verlag,

1993.

[172] P. Wolper and D. Leroy. Reliable Hashing without Collision Detection.

In Proc. of CAV’93, volume 697 of LNCS, pages 59–70. Springer-Verlag,

1993.

