
Looking Good,
Behaving Well
PhD Defence

Michael Westergaard

Department of Computer Science

University of Aarhus

Motivation – Horror Stories

Disasters caused by failure of computer software:

Ariane 5 lifting rocket (economical loss)

Therac-25 radiation machine (loss of
human lives)

Ignored hole in ozone layer (worsening
global warming)

Can we prevent such disasters or at least reduce the
probability of such disasters?

Motivation – Inspiration

Customer

House:

- red

- 180 m2

Specification

Ambiguous
Incomplete

Contractor

?

Implementation I

Implementation II

Architect

brick red

Blueprint

♫Contractor

Implementation

Not equal!

Architect

Visualisation

brick red

Blueprint ♫Contractor

Visualisation

House:

- red

- 180 m2

- roof does

not fall

down

Specification

Different kind of
requirement. We cannot

just state this and hope for
the best. We need to actually

check that the house can
carry the roof. House

can carry

roof

Requirements

Engineer

Yes

Ok

No

Roof is 5,

house can

carry 3

Error report

brick red

Blueprint

light rock

Motivation – The Real One

Photoshop

- with

circles!

- green

and red

Customer

Specification

Formal methods
expert

Formal methods
expert

Visualisation

Formal model

Deleted

elements

cannot be

altered

Verifier

Yes

Ok
No

With more

than one

mouse, we

may edit

deleted elems

Error report

Requirements

Looking good

mouse

(name, green)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
figure)

figure

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxFIGURE

Selecting

MOUSExTASK

Inactive

1`()

MOUSE

Canvas1`("circle", red)

FIGURE (name,
current_color)

1
1`((),color_green)

Behaving well

with circles!

Overview

Example

Visualisation – Looking Good

Verification – Behaving Well

Impact and Future Work

Example – Specification

Drawing program: Photoshop – with circles!

We want to support

Colouring circles green

Deleting circles

Example – Formal Model

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1

1
1`("circle1",green)

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H
HI&&-)."1",0+,%%'-

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1
1`((),delete)

1
1`("circle1",green)

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H
HI&&-)."1",0+,%%'-

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H HI&&&-)."1",0+,%%'-)&J.4,.1%HJ),%2--

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1 1`(((),delete),("circle1",green))

1
1`("circle1",green)

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1

Visualisation
Looking Good

While the model is graphical, it may not be easy to
explain it to a user

The task does not get easier if the model is more
complex, e.g., if we allow colouring circles red, creating
new circles, or moving circles around

Photoshop

- with

circles!

- green

and red

Customer

Specification

Formal methods
expert

Formal methods
expert

Visualisation

Formal model

Deleted

elements

cannot be

altered

Verifier

Yes

Ok
No

With more

than one

mouse, we

may edit

deleted elems

Error report

Requirements

Looking good

mouse

(name, green)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
figure)

figure

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxFIGURE

Selecting

MOUSExTASK

Inactive

1`()

MOUSE

Canvas1`("circle", red)

FIGURE (name,
current_color)

1
1`((),color_green)

with circles!

Example – Visualisation

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1

1
1`("circle1",green)

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H
HI&&-)."1",0+,%%'-

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1
1`((),delete)

1
1`("circle1",green)

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H
HI&&-)."1",0+,%%'-

!"#$%

&'(!%)*+,%%'-

&'(!%)
.#,,%'/0."1",-

&&!"#$%)*."1",0+,%%'-)
&'(!%)*"120."1",--

!"#$% &!"#$%)*/($3-

!"#$%

&'(!%)*.#,,%'/0."1",-

&&!"#$%)*2%1%/%-)
&'(!%)"120."1",--

&&!"#$%)*/($3-)
.4,.1%-

.4,.1%

&!"#$%)
/($3-

&!"#$%)
."1",0+,%%'-

&!"#$%)
2%1%/%-

!"#$%

!"#$%

5"1",
6,%%'

78",/

9%1%/%

:%1%./
;(,+%/

:%1%./
5"1",*6,%%'

:%1%./
9%1%/%

<#$=

>?@:AB;7:CB5DE5FA

:%1%./4'+

>?@:AB;7:C

D'(./4G%

&-

>?@:A

5('G($HI&J.4,.1%HJ)*,%2-

5DE5FA

H HI&&&-)."1",0+,%%'-)&J.4,.1%HJ),%2--

H
HI&J.4,.1%HJ),%2-

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1 1`(((),delete),("circle1",green))

1
1`("circle1",green)

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCFE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCFE

1

The BRITNeY Suite

M. Westergaard and K.B. Lassen. The BRITNeY Suite
Animation Tool. In Proc. of ATPN’06, volume
4024 of LNCS pages 431–440. Springer-
Verlag, 2006.

The BRITNeY Suite supports visualisation
of formal models

Model-based Prototyping of
an Interoperability Protocol

L.M. Kristensen, M. Westergaard, and P.C. Nørgaard.
Model-based Prototyping of an Interoperability Protocol
for Mobile Ad-hoc Networks. In Proc. of IFM’05,
volume 3771 of LNCS, pages 266–286, Springer-
Verlag, 2005.

Using formal models and visualisation
to rapidly develop a prototype
implementation of a real-life
network protocol

Model-based Prototyping of
an Interoperability Protocol

Gateway Advertisements

Sending Data

Mobility and DNS Update

Interoperability Protocol
Formal Model

Gateway2

Gateway

Gateway1

Gateway

AdHoc
Network

AdHocNetwork

Core
Network

CoreNetwork

Config2
GWConfig

Config1
GWConfig

AdHoc
Network

CmdxPacket

Core
Network

CmdxPacket
CoreNetwork AdHocNetwork

Gateway

Gateway

Routing

CNRouting

DNS
Server

DNSServer

Host

Host

Core
Network

I/O

CmdxPacket

I/O

Host

DNSServer

CNRouting

ipadripadr

(symname,newipadr)

(symname,resipadr)

(symname,resipadr)

(RECEIVE ipadr,
 {src = newipadr,
 dest = ipadr,
 cont = DNS_UPD (symname,newipadr)})

(ROUTING,
 {src = ipadr,
 dest = srcipadr,
 cont = DNS_REP (symname,resipadr)})

(RECEIVE ipadr,
 {src = srcipadr,
 dest = ipadr,
 cont = DNS_REQ symname})

DNSUpdateDNSRequest

DNSAdr

IPAdr

DNS
Database

SymNamexIPAdr

Core
Network

I/O

CmdxPacket

I/O

Model-based Prototyping of
an Interoperability Protocol

It is possible to create a prototype using formal models
and visualisation

The behaviour of the prototype is defined by a formal
model which can be used for further refinement and/or
analysis

Using the visualisation it proved possible to
demonstrate the model to management

Problems of Visualisation
Tools
Visualisation of formal models is usually added to tools
for formal modelling in an ad-hoc manner

Visualisation is tied to a specific formalism or tool
It is not possible to extend/modify the functionality of
visualisations

M. Westergaard. A Game-theoretic Approach to
Behavioural Visualisation. In Pre-proc. of FMIS’07, Queen
Mary, University of London, Dept. of Computer Science,
Technical Report number RR-07-08, 2007.

Introduces a formal framework for visualisations

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s13

s12

Select

Color Green

Select

Delete

abort

abort

Select

Circle

Select

Circle

Color

Green

Delete

Select

Color Green

abort

Select

Delete

abort

Select

Delete

abort

Select

Circle

Delete

Color

Green

Select

Circle

abort

Select

Color Green

Viewing a Visualisation as a
Transition System

Select
Color Green

Abort Select
Figure

Running Visualisation and
Formal Model Synchronously

mouse

(name, green)

(name,
current_color)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
circle)

circle

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxCIRCLE

Selecting

MOUSExTASK

Inactive

()

MOUSE

Canvas1`("circle1", red)

CIRCLE

1

1
1`("circle1",red)

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s13

s12

Select

Color Green

Select

Delete

abort

abort

Select

Circle

Select

Circle

Color

Green

Delete

Select

Color Green

abort

Select

Delete

abort

Select

Delete

abort

Select

Circle

Delete

Color

Green

Select

Circle

abort

Select

Color Green

When we run these in
parallel, the formal

model reacts to user
actions and the

visualisation shows
what happens in the

formal model

We synchronise transitions of
the formal model with

transitions of the visualisation.

Gist of Definition of a
Visualisation

Given two transition systems, V and M. V can be used as
visualisation for M if the states and transitions of V and M
can be related in a way such that whenever two states are
related

if it is possible to take a step in V it is possible to take a
related step in M and the resulting states are related
if it is possible to take a step in M it is possible to take a
related step in V and the resulting states are related

We do not need to represent V and M before simulation; we
only need to be able to generate them on-the-fly

…or…

Whenever we do something in the visualisation, it must
be possible to reflect it in the model

Whenever the model does something, it must be
possible to show it in the visualisation

In the report we give the complete definition, and use a
separation of user actions from system actions to
impose a clear flow of information

Contributions
Development of the BRITNeY Suite
for visualisation

Extended to provide generic
platform for experiments with the
coloured Petri net formalism

Use of the BRITNeY Suite in a real-life case study

Development of formal framework for visualisation

Allows us to detach visualisations from the formal
model and supporting tools

A contribution to the field

Verification – Behaving Well
Reconsider the drawing program

Is it possible to alter a circle that has been deleted?

Sporadic testing suggests that the answer is no

…but how can we be sure?

Photoshop

- with

circles!

- green

and red

Customer

Specification

Formal methods
expert

Formal methods
expert

Visualisation

Formal model

Deleted

elements

cannot be

altered

Verifier

Yes

Ok
No

With more

than one

mouse, we

may edit

deleted elems

Error report

Requirements

mouse

(name, green)

((mouse, color_green),
(name, old_color))

mouse (mouse, task)

mouse

(name, current_color)

((mouse, delete),
 (name, old_color))

((mouse, task),
figure)

figure

(mouse,
task)

(mouse,
color_green)

(mouse,
delete)

mouse

mouse

Color
Green

Abort

Delete

Select
Target

Select
Color Green

Select
Delete

Busy

MOUSExTASKxFIGURE

Selecting

MOUSExTASK

Inactive

1`()

MOUSE

Canvas1`("circle", red)

FIGURE (name,
current_color)

1
1`((),color_green)

Behaving well

with circles!

Approach
Represent the entire behaviour
of the system as a graph (a reachability graph)

Each node in the graph represents a possible state
of the system

Each labelled edge in the graph represents that it is
possible to go from the source state to the
destination state using the transitions represented by
the label

Traces in the reachability graph correspond to
executions of the formal model

Example

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s13

s12

Select
Color Green

Select
Delete

abort

abort

Select
Circle

Select
Circle

Color
Green

Delete

Select
Color Green

abort

Select
Delete

abort

Select
Delete

abort

Select
Circle

Delete

Color
Green

Select
Figure

abort

Select
Color Green

Calculating Reachability
Graphs

s1

s2

s5

s3

s4

s6

b b

b

c

a a

a

We know/can calculate
• The initial state
• Successors of any given state

Size of Reachability Graphs
Circles Nodes Time Ratio(Nodes) Ratio(Time)

0
1
2
3
4
5
6
7
8
9
10
11

3 0.00 - -
13 0.00 4.33 -
51 0.00 3.92 -

189 0.01 3.71 5.00
675 0.02 3.57 3.60

2,349 0.07 3.48 3.89
8,019 0.27 3.41 3.86

26,973 1.07 3.36 3.94
89,667 3.69 3.32 3.46

295,245 13.15 3.29 3.56
964,467 129.69 3.27 9.86

3,129,598 2338.22 3.24 18.03

Reduction Techniques

(Symbolic reachability graph analysis)

Explicit reachability graph analysis

(Use external memory)

(Explore only some states)

Store states more efficiently

Delete states during exploration

The Sweep-Line Method

s2

s5

s3

s4

s6

1 2 2 3

b

b

c
s1

b

a a

a

Already processed
Discovered but not yet processed
Not yet discovered

This
defines a sweep-line

between the states with progress
value higher than the lowest progress

value of an unprocessed state and
processed states only. No edge

crosses the sweep-line from right
to left

Define a
progress

measure, which
assigns to each state a

progress value such that
no state leads from a

state with a higher
progress value to a
state with a lower
progress value

Invariant vs. Liveness
This algorithm is fine for checking simple invariant properties

The algorithm (in a more general version) is not very suitable
for checking more advanced properties

Cycles may not be preserved
The algorithm imposes a certain traversal order

T. Mailund and M. Westergaard. Obtaining Memory-Efficient
Reachability Graph Representations Using the Sweep-Line
Method. In Proc. of TACAS’04, volume 2988 of LNCS,
pages 177–191. Springer-Verlag, 2004.

Store a compact version of the reachability graph with
enough information that we can later reconstruct it

2 2 (a,2) (b,3)

1 3 (a,4)

1 3 (b,5)

0

0

Extended Sweep-Line
Method

s1

s2

s5

s3

s4

s6

1 2 2 3

b b

b

c

a a

a1

3

2 4

6

5

Number of
successors Bits per

successor

1

2

3

4

5

6

3 3 (a,5) (b,6) (c,2)

In the report we show
how to traverse this and

obtain the full state
information on-the-fly.

Space usage:
|R| • (2 • w + 2 • log |R| + w) +

|T| • (log |T| + log |R|)

Results – Drawing Example
States Mem Time States Peak Memory Time

1
2
3
4
5
6
7
8
9
10

14 0.0 0 19 7 0.0 61% 0 -
52 0.0 0 59 20 0.0 45% 0 100%

190 0.0 0 199 59 0.0 36% 0 111%
676 0.1 0 687 172 0.0 30% 0 118%

2,350 0.2 1 2,363 486 0.1 24% 1 100%
8,020 0.9 9 8,035 1,469 0.2 22% 8 90%

26,974 3.5 112 26,991 4,425 0.7 19% 88 79%
89,668 12.7 1,522 89,687 12,513 2.1 17% 942 62%

295,246 45.6 22,430 295,267 38,083 7.0 15% 11,569 52%
964,468 161.9 268,275 964,491 115,920 23.1 14% 131,531 49%

Full Sweep-line based algorithm

Results – Drawing Example

States Mem Time States Peak Memory Time
1
2
3
4
5
6
7
8
9
10

19 0.0 0 19 7 0.0 121% 0 -
59 0.0 0 59 20 0.0 117% 0 100%

199 0.0 0 199 59 0.0 116% 0 111%
687 0.0 0 687 172 0.0 116% 0 141%

2,363 0.1 1 2,363 486 0.1 117% 1 145%
8,035 0.2 6 8,035 1,469 0.2 118% 8 147%

26,991 0.6 61 26,991 4,425 0.7 118% 88 145%
89,687 1.8 661 89,687 12,513 2.1 119% 942 142%

295,267 5.9 7,185 295,267 38,083 7.0 119% 11,569 161%
964,491 19.5 81,772 964,491 115,920 23.1 118% 131,531161%

Sweep-line method Sweep-line based algorithm

Points about the Algorithm

Performs well when the sweep-line method does

The method, like the standard sweep-line method, can
be extended to handle regress edges

The constructed representation of the reachability
graph uses little more memory than an optimal
representation

The (extended) method is only implemented in DESIGN/
CPN, which is no longer maintained

Hash-Compaction

Instead of storing the full representation of a state, use
a hash function to generate a compressed state
descriptor

Hash functions need not be
injective, so if two states have
the same compressed state
descriptor, we may not realise
they are different

Hash-Compaction

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h4
a

Never discovered

Incorrect edge

h1 h2 h3 h4

The ComBack Method

M. Westergaard, L.M. Kristensen, G.S. Brodal, and L. Arge.
The ComBack Method—Extending Hash Compaction with
Backtracking. In Proc. of ATPN’07, volume 4546 of MNCS,
pages 446–464. Springer-Verlag, 2007.

Store a spanning tree rooted in the initial state, which
allows us to reconstruct full state descriptors from
compressed state descriptors

The ComBack Method

s1

s2

s5

s3

s4

s6

b b

b

c

a a

ah1

h3

h2 h3

h3

h41

3

2 4

6

5

1 2 3 4 5 6

(1, a) (1, b) (2, a) (4, a) (4, b)

1

2

3

5

h1

h2

h3

h4

State table

Backedge table
4

• s4/h4 is new; assign it number 5
• s2/h2 exists with number 2; restore

1 -a-> 2 or s1 -a-> s2; it is not new
• s6/h3 exists with numbers 3 and 4;

restore 1 -b-> 3 and 1 -a-> 2 -a-> 4
or s1 -b-> s5 and s1 -a-> s2 -a->
s3; it is new; assign it number 6

6

Space usage:
|R| • (wH + 3 • log |R| + log |T|)

Number of reconstructions:
≤ lengthmax • ∑ in(s)

Results – Drawing Example
Circles = 9 States Memory % Time %

Hash-compaction

Full

ComBack

ComBack Cache

295,237 7.5 20% 12.06 92%

295,245 37.6 100% 13.10 100%

295,245 26.1 69% 29.46 225%

295,245 26.2 70% 22.02 168%

Circles = 11 States Memory % Time %

Hash-compaction

Full

ComBack

ComBack Cache

3,124,294 75.6 18% 168.66 7%

3,129,598 427.0 100% 2338.22 100%

3,129,598 280.6 66% 1547.39 66%

3,129,598 280.6 66% 1447.90 62%

Results – Real Life Example

ERDP6,3 States Memory % Time %

Hash-compaction

Full

ComBack

ComBack Cache

4,270,926 113.5 - 3,341 -

- - - - -

4,277,126 572.3 - 42,711 -

4,277,126 571.2 - 18,043 -

ERDP6,2 States Memory % Time %

Hash-compaction

Full

ComBack

ComBack Cache

206,921 5.1 6% 106 93%

207,003 87.4 100% 114 100%

207,003 29.1 33% 865 759%

207,003 29.0 33% 227 199%

Points about the Algorithm
Performs relatively poorly when a lot of states need
reconstruction

This is not only caused by hash-collisions, but also because
we need a reconstruction each time we re-encounter a state

A good caching strategy minimises the number of
reconstructions and significantly improves performance!

The algorithm is traversal agnostic (and thus easy to combine
with other algorithms)

Depth-first traversal often yields long backtraces (= takes
longer) but saves more space that breadth first traversal

Contributions

The extended sweep-line method

Facilitates verification of liveness
properties in main memory using
the sweep-line method

The ComBack method

Makes hash-compaction
complete A contribution to the field

Impact – Verification

The presented methods for verification have been used little

Lack of user-friendly implementation

Difficult to make real-life case studies

Thus difficult to identify problems

Difficult for others to experiment with and improve the
algorithm

Impact – Visualisation

The BRITNeY Suite has been used extensively for
Visualisation (like our own real-life case)
Meta-visualisation (building newer, better visualisations,
e.g., a work-flow system)
Other things (calling Java algorithms from CPN models,
integrating CPN models into multi-formalism tool)

The tool is fairly mature and according to e-mail
correspondence used for several ongoing projects
spanning all of the above categories

Future Work – Visualisation

The BRITNeY Suite is fairly mature and primarily needs
better documentation, bug-fixes, cleanup, etc.

Future Work – Verification

Combine extended Sweep-Line and ComBack
methods (ongoing work in ASCoVeCo project)

Make new methods more accessible (providing means
of using them for non-experts, done in ASCoVeCo
project)

Combine visualisation framework efficiently with
analysis to be able to provide counter examples

