
! 1

Declare
Michael Westergaard

Tuesday, July 19, 2011
The Declare plug-in makes it possible to load and show Declare models in ProM. The package
also contains plug-ins for translating Declare models to other representations, most importantly
LTL formulae and corresponding finite automata and several derived types.

Aside from the import facilities, this plug-in is mostly for developers.

Importing and Showing Stuff
This plug-in can load Declare models and Declare languages. Models are obviously a good thing
(or you wouldn’t be here) and languages are useful for things constructing Declare models, such
as a theoretical Declare miner.

Importing Declare Models
Importing a Declare model is as easy as 1, 2, 3. Except it has one more step:

1. Find the Import button that’s in the ProM
Workspace. Feel free to click on it and proceed to
the next step. You can also not click on it and
instead go do boring stuff.

2. Select the file you want to open. Your file is
probably less awesome than the one in my screen
shot, but you just have to make do. Then give that Open button some clicky action.

! 2

3. You now receive a dialog prompting you
for the file type. The smart choice is
Declare Model.

4. I lied about step 4.

Viewing Declare Models
If you create your Declare model using another

plug-in, it may be shown to you automatically, curtesy of the fairy
automatically showing stuff inside ProM. Otherwise, you may follow this delicate recipe:

1. Select your favorite Declare model in the Workspace. Alternatively, select the one you want
to display.

2. With the mouse cursor, bang the View
Resource button. It is recognized by
not really being a button and not
saying View Resource, but instead
having an eye icon and a tool tip.

3. You now see your Declare model –
specially rendered in 2D just for you!
Doesn’t that make you feel special?

! 3

Importing Declare Languages
To import a Declare language, we do the exact
same in every detail as when importing a Declare
model, except we make some slight changes here
and there:

1. Find the Import button that’s in the ProM
Workspace. Feel free to click on it and
proceed to the next step. You can also not
click on it and instead go do boring stuff.

2. Select the file you want to open. Your file is
probably less awesome than the one in my
screen shot, but you just have to make do.
Then give that Open button some clicky
action.

3. You now receive a dialog prompting you for
the file type. The smart choice is Declare
Language.

You cannot visualize the language. That would just
be silly, wouldn’t it?

Translating Stuff to Other
But Similar Stuff

Declare models can, in one or more steps, be
translated to other things. Zero steps, if we
consider translation to be reflexive.

We shall assume that readers can start a plug-in.
This is done by:

1. Select the source in the Workspace.

2. Click the Use resource button, which much
like the view resource is known by being a
non-buttonny thing with a triangle.

3. Select the appropriate plug-in. Green ones
have enough inputs to be executed as is, yellow
ones need more inputs and invisible ones are
not compatible with your selected input.

4. Click Start to win the lottery xor starting the
selected plug-in.

! 4

Declare model to LTL model
Use a Declare model as input and get a LTL model. LTL models are an abstract representation
of an LTL expression, i.e., it contains a representation of a LTL formula with same behavior as
the given Declare model.

LTL model to Automaton
Use a LTL model as input and get a Automaton as output. An automaton is a finite automaton
which can be used for executing the semantics of the given LTL model.

LTL model to Conjunction
Use a LTL model as input and get a Conjunction. Conjunctions are a more efficient
representation of LTL formula with many conjunctions, which facilitates more efficient
translation to automata. Conjunctions may be used internally by other translations.

Unpack LTL formula
Use a LTL model as input and get a string representation of the formula in the syntax used by
Declare. Useful for debugging.

! 5

LTL formula to Automaton
Same as converting an LTL model to an automaton, except the input instead is just a string
representation of the formula.

LTL formula to Conjunction
Same as converting an LTL model to a conjunction, except the input instead is just a string
representation of the formula.

Conjunction to Automaton
Translate a conjunction to a corresponding automaton.

Automaton to Transition System
A transition system can be used to visualize an automaton or as input for various mining or replay
algorithms in ProM. This translation is slightly more involved than the others, as it requires

! 6

some parameters depending on whether
you want to use the result for
visualization or for algorithmic purposes.
For visualization, adding an artificial init-
state is useful as it makes it easier to see
the first state of the automaton, and
suppressing self-loops also makes the
result more human readable, as they can
be inferred from the other arcs in most
cases. Both of these should be switched

off when using the model algorithmically.

Translating the model on page 2 yields the 3 results
below, depending on the used options (we can also
make one with artificial init-state and suppressed
self-loops).Artificial init-state,

no self-loops

No self-loops

No readability
improvement

! 7

At the top of this page, you find a CPN model illustrating all possible conversions. At the
bottom of the page, you see one of my desktop backgrounds, as Apple Pages is obscuring it.

"model"

Convert
declare_model ltl_model

Unpack

ltl_model

LTLModelDeclareModel

Convert

ltl_model

ltl_formula

LTLFormula

conjunction

automaton

ltl_formula
Convert

conjunction

Convert

ltl_model

conjunction
Convert

automaton

automaton transition_system

Automaton

Conjunction

Convert

TransitionSystem

1 1`"model"

